Methanol-to-olefins(MTO)is industrially applied to produce ethylene and propylene using methanol converted from coal,synthetic gas,and biomass.SAPO-34 zeolites,as the most efficient catalyst in MTO process,are subject...Methanol-to-olefins(MTO)is industrially applied to produce ethylene and propylene using methanol converted from coal,synthetic gas,and biomass.SAPO-34 zeolites,as the most efficient catalyst in MTO process,are subject to the rapid deactivation due to coke deposition.Recent work shows that steam regeneration can provide advantages such as low carbon dioxide emission and enhanced light olefins yield in MTO process,compared to that by air regeneration.A kinetic study on the steam regeneration of spent SAPO-34 catalyst has been carried out in this work.In doing so,we first investigated the effect of temperature on the regeneration performance by monitoring the crystal structure,acidity,residual coke properties and other structural parameters.The results show that with the increase of regeneration temperature,the compositions of residual coke on the catalyst change from pyrene and phenanthrene to naphthalene,which are normally considered as active hydrocarbon pool species in MTO reaction.However,when the regeneration temperature is too high,nitrogen oxides can be found in the residual coke.Meanwhile,as the regeneration temperature increases,the quantity of residual coke reduces and the acidity,BET surface area and pore structure of the regenerated samples can be better recovered,resulting in prolonging catalyst lifetime.We have further derived the kinetics of steam regeneration,and obtained an activation energy of about 177.8 kJ·mol^(-1).Compared that with air regeneration,the activation energy of steam regeneration is higher,indicating that the steam regeneration process is more difficult to occur.展开更多
The coke deposition on HZSM-5/SAPO-34 composite catalysts has been studied in the conversion of ethanol to propylene. The HZSM-5/SAPO-34 composite catalysts were synthesized by hydrothermal method(ZS-HS) and fully b...The coke deposition on HZSM-5/SAPO-34 composite catalysts has been studied in the conversion of ethanol to propylene. The HZSM-5/SAPO-34 composite catalysts were synthesized by hydrothermal method(ZS-HS) and fully blending(ZS-MM). The used catalysts were characterized by XRD, N;adsorption–desorption, TGA, TPO, elemental analysis, FTIR and XPS. The coking kinetics on both ZS-HS and ZS-MM has been investigated and their coking rate equations were obtained. The used ZS-MM catalyst had higher amount of coke and lower nC:nHthan the used ZS-HS. 90% of the coke was deposited in the micropores of ZS-HS, while almost 45% of the coke located in the micropores of ZS-MM. The coke deposited on ZS-HS catalyst was mainly graphite-like carbon species, whereas dehydrogenated coke species was the major on ZS-MM. The coking activation energy of ZS-MM was lower than that of ZS-HS, and the coking rate on ZS-MM was faster than on ZS-HS. In addition, the regeneration of ZS-MM catalyst showed that it had a good hydrothermal stability. The differences on coking behaviors on the two catalysts were due to their different acidic properties and textures.展开更多
The conversion of methanol to olefins (MTO) over the SAPO-34 catalyst in fixed-bed microreactor was studied. The effect of reaction temperatures for methanol conversion to olefins and byproducts was investigated. A te...The conversion of methanol to olefins (MTO) over the SAPO-34 catalyst in fixed-bed microreactor was studied. The effect of reaction temperatures for methanol conversion to olefins and byproducts was investigated. A temperature of 425 ℃ appeared to be the optimum one suitable for conversion of methanol to olefins. Since the presence of water could increase the olefins selectivity, the methanol conversion reactions with mixed water/methanol feed were also studied. The effect of weight hourly space velocity on conversion of methanol was also studied. The results indicated that the olefins selectivity was significantly increased as WHSV increased till approximately 7.69 h-1 then it began to level off. Different factors affecting the catalyst deactivation rate was studied, showing that the catalyst deactivation time was dependent on reaction conditions, and temperatures higher and lower than the optimal one made the catalyst deactivation faster. Adding water to methanol could slow down the catalyst deactivation rate.展开更多
K ions were introduced onto Cu/SAPO-34 catalysts via the ion-exchange process in order to improve their stability under low-temperature hydrothermal aging.The changes in structure and copper-species contents of these ...K ions were introduced onto Cu/SAPO-34 catalysts via the ion-exchange process in order to improve their stability under low-temperature hydrothermal aging.The changes in structure and copper-species contents of these catalysts upon hydrothermal aging were probed in order to investigate their effects on selective catalytic reduction(SCR)activity.For the fresh Cu/SAPO-34 catalysts,K ions had little influence on the chabazite framework but effected their acidities by exchanging with acid sites.After hydrothermal aging,the structural integrity and amount of active sites decreased on pure Cu/SAPO-34.While the K-loaded catalysts showed improved chabazite structure,acidity,and active site conservation with increasing K loading.However,although the 0.7 wt%K catalyst maintained the same crystallinity,active site abundance,and low-temperature SCR activity as the fresh catalyst upon aging,an apparent decrease in SCR activity at high temperature was observed because of the inevitable decrease in the number of Brönsted acid sites.To compensate for the activity disadvantage of K-loaded Cu/SAPO-34 at high temperature,Fe/Beta catalysts were co-employed with K-loaded Cu/SAPO-34,and a wide active temperature window of SCR activity was obtained.Thus,our study reveals that a combined system comprising Fe/Beta and K-loaded Cu/SAPO-34 catalysts shows promise for the elimination of NOx in real-world applications.展开更多
SAPO-34,SAPO-5/34 based catalysts doped with Cu,Ce as active components were synthesized via a one-pot hydrothermal method by using different amounts of additive(a-cellulose),and their catalytic activities were measur...SAPO-34,SAPO-5/34 based catalysts doped with Cu,Ce as active components were synthesized via a one-pot hydrothermal method by using different amounts of additive(a-cellulose),and their catalytic activities were measured for selective catalytic reduction(SCR) of NO with NH3.The synthesized Cu-Ce co-doped products switch from cubic SAPO-34,to flower-like aggregated SAPO-5/34,hybrid crystal SAPO-5/34,and finally to spherical aggregated SAPO-34 with the increase of α-cellulose amount.The Cu-Ce co-doped SAPO-5/34 hybrid crystal structure catalysts with 0.75 mol ratios of C/P(Cu-Ce/SP-0.75)exhibit excellent NH_(3)-SCR activity with higher than 90% NOx conversion in the temperature range of 180-450℃,at WHSV of 20000 mL/(g·h).Furthermore,the catalyst displays outstanding sulfur resistance and NOX conversion maintains above 90% at 200-450℃ after adding 100 ppm of SO_(2).The characteristic results suggest that the high deNOX performance of Cu-Ce/SP-0.75 is due to the enhanced accessibility,abundant activity species,excellent redox property and high adsorptive and activated capacity for NH_(3).展开更多
To reveal how cerium stabilizes Cu/SAPO-34 at low-temperature hydrothermal aging,various amounts of cerium were introduced into Cu/SAPO-34 via impregnation method and treated at 70℃with RH 80%for 96 h.Cerium as Ce^(3...To reveal how cerium stabilizes Cu/SAPO-34 at low-temperature hydrothermal aging,various amounts of cerium were introduced into Cu/SAPO-34 via impregnation method and treated at 70℃with RH 80%for 96 h.Cerium as Ce^(3+)and CeO_(2)nanoparticle is located on the surface of Cu/SAPO-34,and Ce^(3+)plays a vital role on gradually decreasing surface acidity and blocking defect sites with an increase of Ce loading.After hydrothermal aging,Cu/SAPO-34 with high Ce loading shows the superior SCR activity comparable to fresh samples.It is proven that the surface acidity determines the stability of the structure during hydrothermal aging process,and lower surface acidity prevents the number of Cu(Ⅱ)ions from decreasing significantly.Furthermore,the structure's stability helps the recovery of Cu(Ⅱ)ions and renders an outstanding regene ration ability.Our finding paves the way for the design of new Cu/SAPO-34catalysts with good SCR activity and long-term stability in real application.展开更多
Low-carbon process for resource utilization of polycyclic aromatic hydrocarbons(PAHs)in zeolitecatalyzed processes,geared to carbon neutrality-a prominent trend throughout human activities,has been bottlenecked by the...Low-carbon process for resource utilization of polycyclic aromatic hydrocarbons(PAHs)in zeolitecatalyzed processes,geared to carbon neutrality-a prominent trend throughout human activities,has been bottlenecked by the lack of a complete mechanistic understanding of coking and decoking chemistry,involving the speciation and molecular evolution of PAHs,the plethora of which causes catalyst deactivation and forces regeneration,rendering significant CO_(2) emission.Herein,by exploiting the high-resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry(MALDI FT-ICR MS),we unveil the missing fingerprints of the mechanistic pathways for both formation and decomposition of cross-linked cage-passing PAHs for SAPO-34-catalyzed,industrially relevant methanol-to-olefins(MTO)as a model reaction.Notable is the molecule-resolved symmetrical signature:their speciation originates exclusively from the direct coupling of in-cage hydrocarbon pool(HCP)species,whereas water-promoted decomposition of cage-passing PAHs initiates with selective cracking of inter-cage local structures at 8-rings followed by deep aromatic steam reforming.Molecular deciphering the reversibly dynamic evolution trajectory(fate)of full-spectrum aromatic hydrocarbons and fulfilling the real-time quantitative carbon resource footprints advance the fundamental knowledge of deactivation and regeneration phenomena(decay and recovery motifs of autocatalysis)and disclose the underlying mechanisms of especially the chemistry of coking and decoking in zeolite catalysis.The positive yet divergent roles of water in these two processes are disentangled.These unprecedented insights ultimately lead us to a steam regeneration strategy with valuable CO and H_(2) as main products,negligible CO_(2) emission in steam reforming and full catalyst activity recovery,which further proves feasible in other important chemical processes,promising to be a sustainable and potent approach that contributes to carbon-neutral chemical industry.展开更多
Lower olefins,produced from syngas through Fischer-Tropsch synthesis,has been gaining worldwide attention as a non-petroleum route.However,the process demonstrates limited selectivity for target products.Herein,a hybr...Lower olefins,produced from syngas through Fischer-Tropsch synthesis,has been gaining worldwide attention as a non-petroleum route.However,the process demonstrates limited selectivity for target products.Herein,a hybrid catalyst system utilizing Fe-based catalyst and SAPO-34 was shown to enhance the selectivity toward lower olefins.A comprehensive study was conducted to examine the impact of various operating conditions on catalytic performance,such as space velocity,pressure,and temperature,as well as catalyst combinations,including loading pattern,and mass ratio of metal and zeolite.The findings indicated that the addition of SAPO-34 was beneficial for enhancing catalytic activity.Furthermore,compared with AlPO-34 zeolite,the strong-acid site on SAPO-34 was identified to crack the long-chain hydrocarbons,thus contributing to the lower olefin formation.Nevertheless,an excess of strong-acid sites was found to detrimentally impact the selectivity of lower olefins,attributed to the increased aromatization and polymerization of lower olefins.The detailed analysis of a hybrid catalyst in Fischer-Tropsch synthesis provides a practical strategy for improving lower olefins selectivity,and has broader implications for the application of hybrid catalyst in diverse catalytic systems.展开更多
Development of a comprehensive reactor model is of paramount importance for design and scale-up of methanol-to-olefins (MTO) process in a dual fluidized bed reactor (DFB). These models must integrate suitable reaction...Development of a comprehensive reactor model is of paramount importance for design and scale-up of methanol-to-olefins (MTO) process in a dual fluidized bed reactor (DFB). These models must integrate suitable reaction kinetic expressions with hydrodynamic models properly descriptive of gas-solid contact in fluidized bed reactors. In this modeling study, our previously developed kinetic models of MTO fluidized bed reactor and regenerator are coupled with overall mass, energy and pressure balances to ensure smooth circulation of catalyst particles between the two fluidized beds. This integrated model was then applied to determine geometric dimensions of a demo-scale MTO DFB configuration and to obtain the mass distribution of catalyst particles throughout the entire system including the pipes connecting the two reactors. Our model is capable of being integrated into simulation software such as Aspen Plus for plant-wide optimization and scale-up studies.展开更多
基金the National Natural Science Foundation of China(91834302)。
文摘Methanol-to-olefins(MTO)is industrially applied to produce ethylene and propylene using methanol converted from coal,synthetic gas,and biomass.SAPO-34 zeolites,as the most efficient catalyst in MTO process,are subject to the rapid deactivation due to coke deposition.Recent work shows that steam regeneration can provide advantages such as low carbon dioxide emission and enhanced light olefins yield in MTO process,compared to that by air regeneration.A kinetic study on the steam regeneration of spent SAPO-34 catalyst has been carried out in this work.In doing so,we first investigated the effect of temperature on the regeneration performance by monitoring the crystal structure,acidity,residual coke properties and other structural parameters.The results show that with the increase of regeneration temperature,the compositions of residual coke on the catalyst change from pyrene and phenanthrene to naphthalene,which are normally considered as active hydrocarbon pool species in MTO reaction.However,when the regeneration temperature is too high,nitrogen oxides can be found in the residual coke.Meanwhile,as the regeneration temperature increases,the quantity of residual coke reduces and the acidity,BET surface area and pore structure of the regenerated samples can be better recovered,resulting in prolonging catalyst lifetime.We have further derived the kinetics of steam regeneration,and obtained an activation energy of about 177.8 kJ·mol^(-1).Compared that with air regeneration,the activation energy of steam regeneration is higher,indicating that the steam regeneration process is more difficult to occur.
基金support for this work from National Ministry of Education(No.NCET-10-878)Shaanxi Province(No.2011ZKC4-08,2009ZDKG-70)Northwest University(10YSY08)
文摘The coke deposition on HZSM-5/SAPO-34 composite catalysts has been studied in the conversion of ethanol to propylene. The HZSM-5/SAPO-34 composite catalysts were synthesized by hydrothermal method(ZS-HS) and fully blending(ZS-MM). The used catalysts were characterized by XRD, N;adsorption–desorption, TGA, TPO, elemental analysis, FTIR and XPS. The coking kinetics on both ZS-HS and ZS-MM has been investigated and their coking rate equations were obtained. The used ZS-MM catalyst had higher amount of coke and lower nC:nHthan the used ZS-HS. 90% of the coke was deposited in the micropores of ZS-HS, while almost 45% of the coke located in the micropores of ZS-MM. The coke deposited on ZS-HS catalyst was mainly graphite-like carbon species, whereas dehydrogenated coke species was the major on ZS-MM. The coking activation energy of ZS-MM was lower than that of ZS-HS, and the coking rate on ZS-MM was faster than on ZS-HS. In addition, the regeneration of ZS-MM catalyst showed that it had a good hydrothermal stability. The differences on coking behaviors on the two catalysts were due to their different acidic properties and textures.
文摘The conversion of methanol to olefins (MTO) over the SAPO-34 catalyst in fixed-bed microreactor was studied. The effect of reaction temperatures for methanol conversion to olefins and byproducts was investigated. A temperature of 425 ℃ appeared to be the optimum one suitable for conversion of methanol to olefins. Since the presence of water could increase the olefins selectivity, the methanol conversion reactions with mixed water/methanol feed were also studied. The effect of weight hourly space velocity on conversion of methanol was also studied. The results indicated that the olefins selectivity was significantly increased as WHSV increased till approximately 7.69 h-1 then it began to level off. Different factors affecting the catalyst deactivation rate was studied, showing that the catalyst deactivation time was dependent on reaction conditions, and temperatures higher and lower than the optimal one made the catalyst deactivation faster. Adding water to methanol could slow down the catalyst deactivation rate.
基金the funding from National Key Research and Development Program of China(No.2017YFC0211302)National Natural Science Foundation for Youth of China(Grant No.21908207)+1 种基金China Postdoctoral Science Foundation(No.2020M670659)Shanxi Province Science Foundation for Youths(Nos.201901D211224 and 201801D221351).
文摘K ions were introduced onto Cu/SAPO-34 catalysts via the ion-exchange process in order to improve their stability under low-temperature hydrothermal aging.The changes in structure and copper-species contents of these catalysts upon hydrothermal aging were probed in order to investigate their effects on selective catalytic reduction(SCR)activity.For the fresh Cu/SAPO-34 catalysts,K ions had little influence on the chabazite framework but effected their acidities by exchanging with acid sites.After hydrothermal aging,the structural integrity and amount of active sites decreased on pure Cu/SAPO-34.While the K-loaded catalysts showed improved chabazite structure,acidity,and active site conservation with increasing K loading.However,although the 0.7 wt%K catalyst maintained the same crystallinity,active site abundance,and low-temperature SCR activity as the fresh catalyst upon aging,an apparent decrease in SCR activity at high temperature was observed because of the inevitable decrease in the number of Brönsted acid sites.To compensate for the activity disadvantage of K-loaded Cu/SAPO-34 at high temperature,Fe/Beta catalysts were co-employed with K-loaded Cu/SAPO-34,and a wide active temperature window of SCR activity was obtained.Thus,our study reveals that a combined system comprising Fe/Beta and K-loaded Cu/SAPO-34 catalysts shows promise for the elimination of NOx in real-world applications.
基金supported by the National Natural Science Foundation of China (51708309)Natural Science Foundation of Heilongjiang Province+1 种基金China (QC2017065)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2018106)。
文摘SAPO-34,SAPO-5/34 based catalysts doped with Cu,Ce as active components were synthesized via a one-pot hydrothermal method by using different amounts of additive(a-cellulose),and their catalytic activities were measured for selective catalytic reduction(SCR) of NO with NH3.The synthesized Cu-Ce co-doped products switch from cubic SAPO-34,to flower-like aggregated SAPO-5/34,hybrid crystal SAPO-5/34,and finally to spherical aggregated SAPO-34 with the increase of α-cellulose amount.The Cu-Ce co-doped SAPO-5/34 hybrid crystal structure catalysts with 0.75 mol ratios of C/P(Cu-Ce/SP-0.75)exhibit excellent NH_(3)-SCR activity with higher than 90% NOx conversion in the temperature range of 180-450℃,at WHSV of 20000 mL/(g·h).Furthermore,the catalyst displays outstanding sulfur resistance and NOX conversion maintains above 90% at 200-450℃ after adding 100 ppm of SO_(2).The characteristic results suggest that the high deNOX performance of Cu-Ce/SP-0.75 is due to the enhanced accessibility,abundant activity species,excellent redox property and high adsorptive and activated capacity for NH_(3).
基金the National Natural Science Foundation of China for Youths(21908207)National Key R&D Program of China(2021YFB3503200)+3 种基金the Key R&D project of Shandong Province(2021CXGC010703)China Postdoctoral Science Foundation(2020M670659)Shanxi Province Science Foundation for Youths(201901D211224)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2019L0575)。
文摘To reveal how cerium stabilizes Cu/SAPO-34 at low-temperature hydrothermal aging,various amounts of cerium were introduced into Cu/SAPO-34 via impregnation method and treated at 70℃with RH 80%for 96 h.Cerium as Ce^(3+)and CeO_(2)nanoparticle is located on the surface of Cu/SAPO-34,and Ce^(3+)plays a vital role on gradually decreasing surface acidity and blocking defect sites with an increase of Ce loading.After hydrothermal aging,Cu/SAPO-34 with high Ce loading shows the superior SCR activity comparable to fresh samples.It is proven that the surface acidity determines the stability of the structure during hydrothermal aging process,and lower surface acidity prevents the number of Cu(Ⅱ)ions from decreasing significantly.Furthermore,the structure's stability helps the recovery of Cu(Ⅱ)ions and renders an outstanding regene ration ability.Our finding paves the way for the design of new Cu/SAPO-34catalysts with good SCR activity and long-term stability in real application.
基金financial support from the National Natural Science Foundation of China(21991092,21991090,22022202,21972142,21902153,21974138)the Chinese Academy of Sciences(QYZDY-SSW-SC024)the Dalian Institute of Chemical Physics(DICP I201926,DICP I201947)。
文摘Low-carbon process for resource utilization of polycyclic aromatic hydrocarbons(PAHs)in zeolitecatalyzed processes,geared to carbon neutrality-a prominent trend throughout human activities,has been bottlenecked by the lack of a complete mechanistic understanding of coking and decoking chemistry,involving the speciation and molecular evolution of PAHs,the plethora of which causes catalyst deactivation and forces regeneration,rendering significant CO_(2) emission.Herein,by exploiting the high-resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry(MALDI FT-ICR MS),we unveil the missing fingerprints of the mechanistic pathways for both formation and decomposition of cross-linked cage-passing PAHs for SAPO-34-catalyzed,industrially relevant methanol-to-olefins(MTO)as a model reaction.Notable is the molecule-resolved symmetrical signature:their speciation originates exclusively from the direct coupling of in-cage hydrocarbon pool(HCP)species,whereas water-promoted decomposition of cage-passing PAHs initiates with selective cracking of inter-cage local structures at 8-rings followed by deep aromatic steam reforming.Molecular deciphering the reversibly dynamic evolution trajectory(fate)of full-spectrum aromatic hydrocarbons and fulfilling the real-time quantitative carbon resource footprints advance the fundamental knowledge of deactivation and regeneration phenomena(decay and recovery motifs of autocatalysis)and disclose the underlying mechanisms of especially the chemistry of coking and decoking in zeolite catalysis.The positive yet divergent roles of water in these two processes are disentangled.These unprecedented insights ultimately lead us to a steam regeneration strategy with valuable CO and H_(2) as main products,negligible CO_(2) emission in steam reforming and full catalyst activity recovery,which further proves feasible in other important chemical processes,promising to be a sustainable and potent approach that contributes to carbon-neutral chemical industry.
基金supported by the National Natural Science Foundation of China(Grant Nos.22108200,22108311)the Natural Science Foundation of Zhejiang Province(Grant No.LQ22B060013)the Haihe Laboratory of Sustainable Chemical Transformations for financial support.
文摘Lower olefins,produced from syngas through Fischer-Tropsch synthesis,has been gaining worldwide attention as a non-petroleum route.However,the process demonstrates limited selectivity for target products.Herein,a hybrid catalyst system utilizing Fe-based catalyst and SAPO-34 was shown to enhance the selectivity toward lower olefins.A comprehensive study was conducted to examine the impact of various operating conditions on catalytic performance,such as space velocity,pressure,and temperature,as well as catalyst combinations,including loading pattern,and mass ratio of metal and zeolite.The findings indicated that the addition of SAPO-34 was beneficial for enhancing catalytic activity.Furthermore,compared with AlPO-34 zeolite,the strong-acid site on SAPO-34 was identified to crack the long-chain hydrocarbons,thus contributing to the lower olefin formation.Nevertheless,an excess of strong-acid sites was found to detrimentally impact the selectivity of lower olefins,attributed to the increased aromatization and polymerization of lower olefins.The detailed analysis of a hybrid catalyst in Fischer-Tropsch synthesis provides a practical strategy for improving lower olefins selectivity,and has broader implications for the application of hybrid catalyst in diverse catalytic systems.
文摘Development of a comprehensive reactor model is of paramount importance for design and scale-up of methanol-to-olefins (MTO) process in a dual fluidized bed reactor (DFB). These models must integrate suitable reaction kinetic expressions with hydrodynamic models properly descriptive of gas-solid contact in fluidized bed reactors. In this modeling study, our previously developed kinetic models of MTO fluidized bed reactor and regenerator are coupled with overall mass, energy and pressure balances to ensure smooth circulation of catalyst particles between the two fluidized beds. This integrated model was then applied to determine geometric dimensions of a demo-scale MTO DFB configuration and to obtain the mass distribution of catalyst particles throughout the entire system including the pipes connecting the two reactors. Our model is capable of being integrated into simulation software such as Aspen Plus for plant-wide optimization and scale-up studies.