期刊文献+
共找到1,243篇文章
< 1 2 63 >
每页显示 20 50 100
Designing Membrane Electrode Assembly for Electrochemical CO_(2)Reduction:a Review
1
作者 Xuerong Wang Shulin Zhao +4 位作者 Tao Guo Luyao Yang Qianqian Zhao Yuping Wu Yuhui Chen 《Transactions of Tianjin University》 EI CAS 2024年第2期117-129,共13页
Currently, the electrochemical CO_(2) reduction reaction (CO_(2) RR) can realize the resource conversion of CO_(2) , which is a promising approach to carbon resource use. Important advancements have been made in explo... Currently, the electrochemical CO_(2) reduction reaction (CO_(2) RR) can realize the resource conversion of CO_(2) , which is a promising approach to carbon resource use. Important advancements have been made in exploring the CO_(2) RR performance and mechanism because of the rational design of electrolyzer systems, such as H-cells, flow cells, and catalysts. Considering the future development direction of this technology and large-scale application needs, membrane electrode assembly (MEA) systems can improve energy use efficiency and achieve large-scale CO_(2) conversion, which is considered the most promising technology for industrial applications. This review will concentrate on the research progress and present situation of the MEA component structure. This paper begins with the composition and construction of a gas diff usion electrode. Then, the application of ion-exchange membranes in MEA is introduced. Furthermore, the eff ects of pH and the anion and cation of the anolyte on MEA performance are explored. Additionally, we present the anode reaction type in MEA. Finally, the challenges in this field are summarized, and upcoming trends are projected. This review should offer researchers a clearer picture of MEA systems and provide important, timely, and valuable insights into rational electrolyzer design to facilitate further development of CO_(2) electrochemical reduction. 展开更多
关键词 CO_(2)reduction ELECTROCATALYSIS Membrane electrode assembly
下载PDF
Novel Perovskite Oxide Hybrid Nanofibers Embedded with Nanocatalysts for Highly Efficient and Durable Electrodes in Direct CO_(2) Electrolysis
2
作者 Akromjon Akhmadjonov Kyung Taek Bae Kang Taek Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期214-230,共17页
The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)R... The unique characteristics of nanofibers in rational electrode design enable effec-tive utilization and maximizing material properties for achieving highly efficient and sustainable CO_(2) reduction reactions( CO_(2)RRs)in solid oxide elec-trolysis cells(SOECs).However,practical appli-cation of nanofiber-based electrodes faces chal-lenges in establishing sufficient interfacial contact and adhesion with the dense electrolyte.To tackle this challenge,a novel hybrid nanofiber electrode,La_(0.6)Sr_(0.4)Co_(0.15)Fe_(0.8)Pd_(0.05)O_(3-δ)(H-LSCFP),is developed by strategically incorporating low aspect ratio crushed LSCFP nanofibers into the excess porous interspace of a high aspect ratio LSCFP nanofiber framework synthesized via electrospinning technique.After consecutive treatment in 100% H_(2) and CO_(2) at 700°C,LSCFP nanofibers form a perovskite phase with in situ exsolved Co metal nanocatalysts and a high concentration of oxygen species on the surface,enhancing CO_(2) adsorption.The SOEC with the H-LSCFP electrode yielded an outstanding current density of 2.2 A cm^(-2) in CO_(2) at 800°C and 1.5 V,setting a new benchmark among reported nanofiber-based electrodes.Digital twinning of the H-LSCFP reveals improved contact adhesion and increased reaction sites for CO_(2)RR.The present work demonstrates a highly catalytically active and robust nanofiber-based fuel electrode with a hybrid structure,paving the way for further advancements and nanofiber applications in CO_(2)-SOECs. 展开更多
关键词 NANOFIBERS Fuel electrodes Digital twinning CO_(2)reduction reaction Solid oxide electrolysis cells
下载PDF
协同组装MnO_2/石墨烯薄膜材料及其电化学性能
3
作者 马立国 《合成纤维》 CAS 2024年第10期47-53,共7页
通过电化学剥离制备石墨烯,同时协同组装制备了3D MnO_2/石墨烯电极薄膜材料,电化学性能测试表明,它具有较高的电容量、倍率性能和较好的循环稳定性,在1 A/g的电流密度下具有607 F/g的较高电容量,在循环10 000圈后仍保持94.1%的容量值,... 通过电化学剥离制备石墨烯,同时协同组装制备了3D MnO_2/石墨烯电极薄膜材料,电化学性能测试表明,它具有较高的电容量、倍率性能和较好的循环稳定性,在1 A/g的电流密度下具有607 F/g的较高电容量,在循环10 000圈后仍保持94.1%的容量值,未来可以应用到新型电极材料等领域。 展开更多
关键词 MnO_2/石墨烯薄膜 新型电极材料 协同组装
下载PDF
Effects of current density on preparation and performance of Al/conductive coating/α-PbO_2-Ce O_2-TiO_2/β-Pb O_2-MnO_2-WC-ZrO_2 composite electrode materials 被引量:1
4
作者 杨海涛 陈步明 +5 位作者 郭忠诚 刘焕荣 张永春 黄惠 徐瑞东 付仁春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3394-3404,共11页
Al/conductive coating/α-Pb O2-Ce O2-Ti O2/β-PbO 2-MnO 2-WC-Zr O2 composite electrode material was prepared on Al/conductive coating/α-PbO 2-Ce O2-Ti O2 substrate by electrochemical oxidation co-deposition technique... Al/conductive coating/α-Pb O2-Ce O2-Ti O2/β-PbO 2-MnO 2-WC-Zr O2 composite electrode material was prepared on Al/conductive coating/α-PbO 2-Ce O2-Ti O2 substrate by electrochemical oxidation co-deposition technique. The effects of current density on the chemical composition, electrocatalytic activity, and stability of the composite anode material were investigated by energy dispersive X-ray spectroscopy(EDXS), anode polarization curves, quasi-stationary polarization(Tafel) curves, electrochemical impedance spectroscopy(EIS), scanning electron microscopy(SEM), and X-ray diffraction(XRD). Results reveal that the composite electrode obtained at 1 A/dm2 possesses the lowest overpotential(0.610 V at 500 A/m2) for oxygen evolution, the best electrocatalytic activity, the longest service life(360 h at 40 °C in 150 g/L H2SO4 solution under 2 A/cm2), and the lowest cell voltage(2.75 V at 500 A/m2). Furthermore, with increasing current density, the coating exhibits grain growth and the decrease of content of Mn O2. Only a slight effect on crystalline structure is observed. 展开更多
关键词 composite electrode material A1 substrate β-PbO2-MnO2-WC-ZrO2 electrochemical co-deposition current density
下载PDF
Preparation of nano-PANI@MnO_2 by surface initiated polymerization method using as a nano-tubular electrode material:The amount effect of aniline on the microstructure and electrochemical performance 被引量:1
5
作者 Fen Ran Yunlong Yang +5 位作者 Lei Zhao Xiaoqin Niu Dingjun Zhang Lingbin Kong Yongchun Luo Long Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第4期388-393,共6页
In this study,nano-polyanline and manganese oxide nanometer tubular composites(nano-PANI@MnO2)were prepared by a surface initiated polymerization method and used as electrochemical capacitor electrode materials; and... In this study,nano-polyanline and manganese oxide nanometer tubular composites(nano-PANI@MnO2)were prepared by a surface initiated polymerization method and used as electrochemical capacitor electrode materials; and the effect of aniline amount on the microstructure and electrochemical performance was investigated. The microstructures and surface morphologies of nano-PANI@MnO2 were characterized by X-ray diffraction,scanning electron microscopy and fourier transformation infrared spectroscope. The electrochemical performance of these composite materials was performed with cyclic voltammetry,charge–discharge test and electrochemical impedance spectroscopy,respectively. The results demonstrate that the feed ratio of aniline to MnO2 played a very important role in constructing the hierarchically nano-structure,which would,hence,determine the electrochemical performance of the materials. Using the templateassisted strategy and controlling the feed ratio of aniline to MnO2,the nanometer tubular structure of nanoPANI@MnO2 was obtained. A maximum specific capacitance of 386 F/g was achieved in aqueous 1 mol/L Na NO3 electrolyte with the potential range from 0 to 0.6 V(vs. SCE). 展开更多
关键词 Electrochemical capacitors Nano-PANI@MnO2 electrode materials
下载PDF
Oxygen Evolution Efficiency and Chlorine Evolution Efficiency for Electrocatalytic Properties of MnO_2-based Electrodes in Seawater 被引量:1
6
作者 YAN Zhenwei SONG Lijun +1 位作者 TANG Mingqi FENG Zaiqiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第1期69-74,共6页
To improve both oxygen evolution efficiency and stability at high temperatures, Mn, Mn+Mo, Mn+Mo+V, and Mn+Fe+V oxide electrodes were prepared on a Ti substrate, with an intermediate layer of IrO_2, by an anodic depos... To improve both oxygen evolution efficiency and stability at high temperatures, Mn, Mn+Mo, Mn+Mo+V, and Mn+Fe+V oxide electrodes were prepared on a Ti substrate, with an intermediate layer of IrO_2, by an anodic deposition method. The crystal structure, surface morphology, pore size distribution, specific surface area, and voltammetric charge were then characterized for each electrode. The results demonstrated that for Mn-O electrodes, the preferential orientation of the(100) crystal plane and the mesopore structure played negative roles in the oxygen evolution reaction. On the basis of the electrocatalytic properties of MnO2-based electrodes in seawater, the outer surface voltammetric charge at a scan rate of 500 mV·s-1 was shown to effectively indicate whether oxygen evolution reactions were preferred over chlorine evolution reactions. The Mn-O electrode exhibited oxygen evolution efficiency of only 47.27%, whereas the Mn+Mo, Mn+Mo+V and Mn+Fe+V oxide electrodes displayed oxygen evolution efficiency of nearly 100%. This means that adding Mo, V, and Fe elements to the electrode can improve its crystal structure and morphology as well as further enhancing its oxygen evolution efficiency. 展开更多
关键词 electrodeposition MnO2-based electrodeS oxygen evolution reaction seawater electrolysis
下载PDF
LiTFSI salt concentration effect to digest lithium polysulfides for high-loading sulfur electrodes 被引量:1
7
作者 Jin-Kwang Song Moonsoo Kim +1 位作者 Seongbae Park Young-Jun Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期574-581,I0015,共9页
Sulfur utilization improvement and control of dissolved lithium polysulfide(LiPS;Li_(2)S x,2<x≤8)are cru-cial aspects of the development of lithium-sulfur(Li-S)batteries,especially in high-loading sulfur elec-trode... Sulfur utilization improvement and control of dissolved lithium polysulfide(LiPS;Li_(2)S x,2<x≤8)are cru-cial aspects of the development of lithium-sulfur(Li-S)batteries,especially in high-loading sulfur elec-trodes and low electrolyte/sulfur(E/S)ratios.The sluggish reaction in the low E/S ratio induces poor LiPS solubility and unstable Li_(2)S electrodeposition,resulting in limited sulfur utilization,especially under high-loading sulfur electrode.In this study,we report on salt concentration effects that improve sulfur utilization with a high-loading cathode(6 mgs ulfurcm^(-2)),a high sulfur content(80 wt%)and a low E/S ratio(5 m L gs ulfur^(-1)).On the basis of the rapid LiPS dissolving in a low concentration electrolyte,we estab-lished that the quantity of Li_(2)S electrodeposition from a high Li+diffusion coefficient,referring to the reduction of LiPS precipitation,was significantly enhanced by a faster kinetic.These results demonstrate the importance of kinetic factors for the rate capability and cycle life stability of Li-S battery electrolytes through high Li_(2)S deposition under high-loading sulfur electrode. 展开更多
关键词 Lithium-sulfur battery Electrolyte concentration Li2S deposition High-loading sulfur electrode
下载PDF
Computational design of promising 2D electrode materials for Li-ion and Li–S battery applications 被引量:1
8
作者 Ke Fan Yuen Hong Tsang Haitao Huang 《Materials Reports(Energy)》 2023年第3期1-23,共23页
Lithium-ion batteries(LIBs)and lithium-sulfur(Li–S)batteries are two types of energy storage systems with significance in both scientific research and commercialization.Nevertheless,the rational design of electrode m... Lithium-ion batteries(LIBs)and lithium-sulfur(Li–S)batteries are two types of energy storage systems with significance in both scientific research and commercialization.Nevertheless,the rational design of electrode materials for overcoming the bottlenecks of LIBs and Li–S batteries(such as low diffusion rates in LIBs and low sulfur utilization in Li–S batteries)remain the greatest challenge,while two-dimensional(2D)electrodes materials provide a solution because of their unique structural and electrochemical properties.In this article,from the perspective of ab-initio simulations,we review the design of 2D electrode materials for LIBs and Li–S batteries.We first propose the theoretical design principles for 2D electrodes,including stability,electronic properties,capacity,and ion diffusion descriptors.Next,classified examples of promising 2D electrodes designed by theoretical simulations are given,covering graphene,phosphorene,MXene,transition metal sulfides,and so on.Finally,common challenges and a future perspective are provided.This review paves the way for rational design of 2D electrode materials for LIBs and Li–S battery applications and may provide a guide for future experiments. 展开更多
关键词 Lithium-ion batteries Lithium-sulfur batteries 2D electrode materials Computational design
下载PDF
A facile finger-paint physical modification for bilateral electrode/electrolyte interface towards a stable aqueous Zn battery
9
作者 Hang Yang Duo Chen +6 位作者 Yicheng Tan Hao Xu Li Li Yiming Zhang Chenglin Miao Guangshe Li Wei Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期101-109,I0004,共10页
Since the electrode/electrolyte interface(EEI)is the main redox center of electrochemical processes,proper manipulation of the EEI microenvironment is crucial to stabilize interfacial behaviors.Here,a finger-paint met... Since the electrode/electrolyte interface(EEI)is the main redox center of electrochemical processes,proper manipulation of the EEI microenvironment is crucial to stabilize interfacial behaviors.Here,a finger-paint method is proposed to enable quick physical modification of glass-fiber separator without complicated chemical technology to modulate EEI of bilateral electrodes for aqueous zinc-ion batteries(ZIBs).An elaborate biochar derived from Aspergillus Niger is exploited as the modification agent of EEI,in which the multi-functional groups assist to accelerate Zn^(2+)desolvation and create a hydrophobic environment to homogenize the deposition behavior of Zn anode.Importantly,the finger-paint interface on separator can effectively protect cathodes from abnormal capacity fluctuation and/or rapid attenuation induced by H_(2)O molecular on the interface,which is demonstrated in modified MnO_(2),V_(2)O_(5),and KMn HCF-based cells.The as-proposed finger-paint method opens a new idea of bilateral interface engineering to facilitate the access to the practical application of the stable zinc electrochemistry. 展开更多
关键词 Aqueous Zinc battery electrode/electrolyte interface Interface modification MnO_(2) V_(2)O_(5) KMnHCF
下载PDF
Peptide self‐assembly as a strategy for facile immobilization of redox enzymes on carbon electrodes
10
作者 Itzhak Grinberg Oren Ben‐Zvi +1 位作者 Lihi Adler‐Abramovich Iftach Yacoby 《Carbon Energy》 SCIE EI CAS CSCD 2023年第11期15-30,共16页
Redox-enzyme‐mediated electrochemical processes such as hydrogen production,nitrogen fixation,and CO_(2) reduction are at the forefront of the green chemistry revolution.To scale up,the inefficient two‐dimensional(2... Redox-enzyme‐mediated electrochemical processes such as hydrogen production,nitrogen fixation,and CO_(2) reduction are at the forefront of the green chemistry revolution.To scale up,the inefficient two‐dimensional(2D)immobilization of redox enzymes on working electrodes must be replaced by an efficient dense 3D system.Fabrication of 3D electrodes was demonstrated by embedding enzymes in polymer matrices.However,several requirements,such as simple immobilization,prolonged stability,and resistance to enzyme leakage,still need to be addressed.The study presented here aims to overcome these gaps by immobilizing enzymes in a supramolecular hydrogel formed by the self‐assembly of the peptide hydrogelator fluorenylmethyloxycarbonyldiphenylalanine.Harnessing the self‐assembly process avoids the need for tedious and potentially harmful chemistry,allowing the rapid loading of enzymes on a 3D electrode under mild conditions.Using the[FeFe]hydrogenase enzyme,high enzyme loads,prolonged resistance against electrophoresis,and highly efficient hydrogen production are demonstrated.Further,this enzyme retention is shown to arise from its interaction with the peptide nanofibrils.Finally,this method is successfully used to retain other redox enzymes,paving the way for a variety of enzyme‐mediated electrochemical applications. 展开更多
关键词 3D electrode enzymes encapsulation H2 production HYDROGENASE peptide hydrogel
下载PDF
Photoelectrochemical CO_(2) electrolyzers: From photoelectrode fabrication to reactor configuration
11
作者 Jose Antonio Abarca Guillermo Díaz-Sainz +2 位作者 Ivan Merino-Garcia Angel Irabien Jonathan Albo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期455-480,I0012,共27页
The photoelectrochemical conversion of CO_(2) into value-added products emerges as an attractive approach to alleviate climate change. One of the main challenges in deploying this technology is, however, the developme... The photoelectrochemical conversion of CO_(2) into value-added products emerges as an attractive approach to alleviate climate change. One of the main challenges in deploying this technology is, however, the development and optimization of(photo)electrodes and photoelectrolyzers. This review focuses on the fabrication processes, structure, and characterization of(photo)electrodes, covering a wide range of fabrication techniques, from rudimentary to automated fabrication processes. The work also highlights the most relevant features of(photo)electrodes, with special emphasis on how to measure and optimize them. Finally, the review analyses the integration of(photo)electrodes in different photoelectrolyzer architectures, analyzing the most recent research work that comprises photocathode, photoanode,photocathode-photoanode, and tandem photoelectrolyzer configurations to ideally achieve self-sustained CO_(2) conversion systems. Overall, comprehensive guidelines are provided for future advancements in developing effective devices for CO_(2) conversion, bridging the gap towards the use of sunlight as the unique energy input and practical applications. 展开更多
关键词 Decarbonization CO_(2)photoelectroreduction (Photo)electrodes Fabrication techniques Photoelectrolyzer configuration
下载PDF
Preparation of B_(2)O_(3)-ZnO-SiO_(2)Glass and Sintering Densification of Copper Terminal Electrode Applied in Multilayer Ceramic Capacitors
12
作者 YUE Yi LI Hong +6 位作者 CAO Xiuhua ZHANG Xuehui HUANG Jun HUANG Xuye ZHANG Yongqiang XU Ruipeng XIONG Dehua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期960-968,共9页
B_(2)O_(3)-Zn O-SiO_(2)(BZS)glass containing Cu O with excellent acid resistance,wetting properties,and high-temperature sintering density was prepared by high temperature melting method and then applied in copper ter... B_(2)O_(3)-Zn O-SiO_(2)(BZS)glass containing Cu O with excellent acid resistance,wetting properties,and high-temperature sintering density was prepared by high temperature melting method and then applied in copper terminal electrode for multilayer ceramic capacitors(MLCC)applications.The structure and property characterization of B_(2)O_(3)-Zn O-SiO_(2)glass,including X-ray diffraction,FTIR,scanning electron microscopy,high-temperature microscopy,and differential scanning calorimetry,indicated that the addition of CuO improved the glass’s acid resistance and glass-forming ability.The wettability and acid resistance of this glass were found to be excellent when CuO content was 1.50 wt%.Compared to BZS glass,the CuO-added glass exhibited excellent wettability to copper powder and corrosion resistance to the plating solution.The sintered copper electrode films prepared using the glass with CuO addition had better densification and lower sintering temperature of 750℃.Further analysis of the sintering mechanism reveals that the flowability and wettability of the glass significantly impact the sintering densification of the copper terminal electrodes. 展开更多
关键词 B_(2)O_(3)-ZnO-SiO_(2)(BZS) low melting glass MLCC DENSIFICATION copper terminal electrode
下载PDF
High-Con cent rat ion Electrosynthesis of Formic Acid/Formate from CO_(2):Reactor and Electrode Design Strategies
13
作者 Yizhu Kuang Hesamoddin Rabiee +4 位作者 Lei Ge Thomas E.Rufford Zhiguo Yuan John Bell Hao Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期141-157,共17页
The electrochemical CO_(2)reduction reaction(CO_(2)RR),driven by renewable energy,provides a potential carbon-neutral avenue to convert CO_(2)into valuable fuels and feedstocks.Conversion of CO_(2)into formic acid/for... The electrochemical CO_(2)reduction reaction(CO_(2)RR),driven by renewable energy,provides a potential carbon-neutral avenue to convert CO_(2)into valuable fuels and feedstocks.Conversion of CO_(2)into formic acid/formate is considered one of the economical and feasible methods,owing to their high energy densities,and ease of distribution and storage.The separation of formic acid/formate from the reaction mixtures accounts for the majority of the overall CO_(2)RR process cost,while the increment of product concentration can lead to the reduction of separation cost,remarkably.In this paper,we give an overview of recent strategies for highly concentrated formic acid/formate products in CO_(2)RR.CO_(2)RR is a complex process with several different products,as it has different intermediates and reaction pathways.Therefore,this review focuses on recent study strategies that can enhance targeted formic acid/formate yield,such as the all-solid-state reactor design to deliver a high concentration of products during the reduction of CO_(2)in the electrolyzer.Firstly,some novel electrolyzers are introduced as an engineering strategy to improve the concentration of the formic acid/formate and reduce the cost of downstream separations.Also,the design of planar and gas diffusion electrodes(GDEs)with the potential to deliver high-concentration formic acid/formate in CO_(2)RR is summarized.Finally,the existing technological challenges are highlighted,and further research recommendations to achieve high-concentration products in CO_(2)RR.This review can provide some inspiration for future research to further improve the product concentration and economic benefits of CO_(2)RR. 展开更多
关键词 electrochemical CO_(2)reduction reaction electrode design formic acid/formate high-concentration reactor design
下载PDF
Graphene-based electrodes and catalysts for electroreduction of CO_(2)to low-carbon alcohols
14
作者 Lei Wang Patrick Lira +5 位作者 Guangzhi Hu Jianmin Luo Zhao Sun Richard Davis Yudai Huang Sam Toan 《Materials Reports(Energy)》 2023年第2期142-153,I0004,共13页
The electrochemical reduction of CO_(2)(CO_(2)ER)into the renewable and sustainable green fuels,such as low-carbon alcohols,is one of several workable strategies.CO_(2)ER can be combined with renewable electricity to ... The electrochemical reduction of CO_(2)(CO_(2)ER)into the renewable and sustainable green fuels,such as low-carbon alcohols,is one of several workable strategies.CO_(2)ER can be combined with renewable electricity to transform intermittent energy sources(such as wind,hydro,and solar)into a fuel that can be stored until it is ready to be used.The intrinsic characteristics of the employed catalyst have a significant and substantial effect on the efficiency of CO_(2)ER and the ensuing economic viability.The paradigmatic multicarbon alcohol catalysts should increase the concentration of*CO in the reaction environment,stabilize the key intermediate products during the reaction,and facilitate the C-C coupling interaction.Since graphene has a large surface area and exceptional conductivity,it has been used as a support for active phases(nanoparticles or nanosheets).It is possible for graphene to enhance charge transport and accelerate CO_(2)conversion through its electronic and structural coupling effects.At the interface,a synergy can be produced that improves CO_(2)ER by increasing*CO adsorption,intermediate binding,and stability.This article focuses on recent advancements in graphene-based catalysts that promote CO_(2)ER to alcohols.Likewise,this paper also describes and discusses the key role graphene plays in catalyzing CO_(2)ER into alcohols.Finally,we hope to provide future ideas for the design of graphene-based electrocatalysts. 展开更多
关键词 GRAPHENE ELECTROCATALYSTS CO_(2)reduction ALCOHOL electrode
下载PDF
Free-Standing α-MoO_(3)/Ti_(3)C_(2) MXene Hybrid Electrode in Water-in-Salt Electrolytes
15
作者 Mohit Saraf Christopher E.Shuck +5 位作者 Nazgol Norouzi Kyle Matthews Alex Inman Teng Zhang Ekaterina Pomerantseva Yury Gogotsi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期6-14,共9页
While transition-metal oxides such as α-MoO_(3)provide high capacity,their use is limited by modest electronic conductivity and electrochemical instability in aqueous electrolytes.Two-dimensional(2D)MXenes,offer meta... While transition-metal oxides such as α-MoO_(3)provide high capacity,their use is limited by modest electronic conductivity and electrochemical instability in aqueous electrolytes.Two-dimensional(2D)MXenes,offer metallic conductivity,but their capacitance is limited in aqueous electrolytes.Insertion of partially solvated cations into Ti_(3)C_(2)MXene from lithium-based water-in-salt(WIS)electrolytes enables charge storage at positive potentials,allowing a wider potential window and higher capacitance.Herein,we demonstrate that α-MoO_(3)/Ti_(3)C_(2)hybrids combine the high capacity of α-MoO_(3)and conductivity of Ti_(3)C_(2)in WIS(19.8 m LiCI)electrolyte in a wide1.8 V voltage window.Cyclic voltammograms reveal multiple redox peaks from α-MoO_(3)in addition to the well-separated peaks of Ti_(3)C_(2)in the hybrid electrode.This leads to a higher specific charge and a higher rate capability compared to a carbon and binder containing α-MoO_(3)electrode.These results demonstrate that the addition of MXene to less conductive oxides eliminates the need for conductive carbon additives and binders,leads to a larger amount of charge stored,and increases redox capacity at higher rates.In addition,MXene encapsulated α-MoO_(3)showed improved electrochemical stability,which was attributed to the suppressed dissolution of α-MoO_(3).The work suggests that oxide/MXene hybrids are promising for energy storage. 展开更多
关键词 free-standing electrode Ti_(3)C_(2)MXene water-in-salt electrolytes α-MoO_(3)nanobelts
下载PDF
5%Ag掺杂对MNO_(2)纳米棒和海胆微球形貌及其甲苯氧化性能的影响
16
作者 鲁美娟 方汉孙 +4 位作者 黄华军 李丹萍 吴玮玲 屈小路 喻成龙 《环境工程技术学报》 CAS CSCD 北大核心 2024年第4期1239-1246,共8页
采用水热法制备了MNO_(2)纳米棒和海胆微球,并原位掺杂5%Ag制备了Mn-Ag复合氧化物,利用SEM、XRD、BET、Raman等表征技术对其结构进行表征,并考察不同催化剂对甲苯的去除性能。结果表明:(NH_(4))_(2)S_(2)O_(8)的掺入量会对MNO_(2)的形... 采用水热法制备了MNO_(2)纳米棒和海胆微球,并原位掺杂5%Ag制备了Mn-Ag复合氧化物,利用SEM、XRD、BET、Raman等表征技术对其结构进行表征,并考察不同催化剂对甲苯的去除性能。结果表明:(NH_(4))_(2)S_(2)O_(8)的掺入量会对MNO_(2)的形貌产生影响,当其掺入量为2.28 g时,形成MNO_(2)纳米棒,当其掺入量为6.84 g时,形成MNO_(2)海胆微球;MNO_(2)纳米棒掺杂5%的Ag后,形貌未发生变化,但当MNO_(2)海胆微球掺杂5%Ag时,表面的纳米线较MNO_(2)海胆微球有所增长,且出现了缠绕现象,形成了空心鸟巢状结构;5%Ag掺杂后,对MNO_(2)纳米棒和MNO_(2)海胆微球的晶型未产生影响,均为α-MNO_(2),但5%Ag-MNO_(2)纳米棒出现了Mn2O_(3)的衍射峰;MNO_(2)海胆微球较MNO_(2)纳米棒的比表面积、孔径和孔容均增大,且Ag的掺杂进一步提高了MNO_(2)海胆微球的比表面积、孔径和孔容;MNO_(2)海胆微球比MNO_(2)纳米棒具有更好的甲苯去除性能,且5%Ag掺杂后,MNO_(2)海胆微球对甲苯的去除性能达到最好。 展开更多
关键词 MNO_(2)纳米棒 MNO_(2)海胆微球 AG掺杂 形貌影响 甲苯去除
下载PDF
溶胶凝胶法铈锆锰基脱硝催化剂制备及性能
17
作者 李渊 王旭超 谭小耀 《天津工业大学学报》 CAS 北大核心 2024年第3期23-31,共9页
为了提高铈锆基脱硝催化剂的低温脱硝性能,采用溶胶凝胶法和溶胶凝胶法+浸渍法制备了一系列铈锆锰基脱硝催化剂,通过XRD、XPS、N_(2)-吸附脱附、NH_(3)-TPD、H_(2)-TPR、SEM/EDS等手段对催化剂进行了表征,对催化剂的脱硝性能进行了评价... 为了提高铈锆基脱硝催化剂的低温脱硝性能,采用溶胶凝胶法和溶胶凝胶法+浸渍法制备了一系列铈锆锰基脱硝催化剂,通过XRD、XPS、N_(2)-吸附脱附、NH_(3)-TPD、H_(2)-TPR、SEM/EDS等手段对催化剂进行了表征,对催化剂的脱硝性能进行了评价。结果表明:在100~350℃温度范围内,空速为220000 h^(-1)的条件下,采用溶胶凝胶法制备的CZM-0.2催化剂展现出最好的低温脱硝性能;CZM-0.2催化剂优异的低温脱硝性能主要与其较好的Mn分散度、较高的Mn^(4+)含量、较强的低温还原性能(MnO_(x)的逐步还原)和较多的弱酸位点有关。 展开更多
关键词 NH3-SCR 铈锆锰基脱硝催化剂 溶胶凝胶 掺杂改性
下载PDF
水系铵离子电池β-MnO_(2)正极材料的制备及性能研究
18
作者 刘扬 陈晗 +1 位作者 向凯雄 周伟 《湖南工业大学学报》 2024年第1期78-83,共6页
通过简单的水热法合成了隧道型β-MnO_(2)正极材料并应用于水系铵离子电池,并采用1 mol/L(NH4)2SO4水系电解液,在窗口电压为0~1.6 V范围内,测试其电化学性能。实验结果表明:β-MnO_(2)正极材料在0.1A/g电流密度下表现出109.8 mAh/g放电... 通过简单的水热法合成了隧道型β-MnO_(2)正极材料并应用于水系铵离子电池,并采用1 mol/L(NH4)2SO4水系电解液,在窗口电压为0~1.6 V范围内,测试其电化学性能。实验结果表明:β-MnO_(2)正极材料在0.1A/g电流密度下表现出109.8 mAh/g放电比容量,经过140次循环后,其放电比容量仍有101.9 mAh/g,容量保留率为92.8%,库伦效率接近100%,具有优异的循环稳定性能。同时还具有优异的倍率性能,β-MnO_(2)纳米棒正极材料即使在1.0 A/g大电流密度下仍有78.7 mAh/g。此外,通过非原位FTIR、XPS测试探索了其储铵机理,结果表明铵根离子具有良好的可逆性。 展开更多
关键词 水系铵离子电池 β-MnO_(2) 正极材料 水热法
下载PDF
含氧空位的氟掺杂二氧化锰助力稳定锌离子电池
19
作者 唐晓宁 夏澍 +4 位作者 雷杰 杨兴富 罗秋洋 刘珺楠 薛安 《无机化学学报》 SCIE CAS CSCD 北大核心 2024年第9期1671-1678,共8页
将无机盐NH_(4)F加入到Mn O_(2)的前驱体溶液中,通过高效、简单的一步水热法制备了具有氧缺陷的F掺杂α-Mn O_(2)纳米棒(记为F-Mn O_(2))。氧空位和F掺杂对提高F-Mn O_(2)的导电性、促进离子扩散、提高倍率性能起着至关重要的作用。另外... 将无机盐NH_(4)F加入到Mn O_(2)的前驱体溶液中,通过高效、简单的一步水热法制备了具有氧缺陷的F掺杂α-Mn O_(2)纳米棒(记为F-Mn O_(2))。氧空位和F掺杂对提高F-Mn O_(2)的导电性、促进离子扩散、提高倍率性能起着至关重要的作用。另外,由于F掺杂,形成了F—Mn键,这可以有效地抑制放电产物中Mn^(3+)的Jahn-Teller畸变,从而提高结构的稳定性。得益于这些协同效应,组装的Zn||F-Mn O_(2)全电池在0.5 A·g^(-1)下,首圈放电比容量高达274 m Ah·g^(-1),且具有较长的循环寿命和优异的倍率性能。同时,通过循环伏安(CV)和恒流充放电(GCD)曲线证明了F-Mn O_(2)的储能机制为H^(+)和Zn^(2+)的共嵌入/脱出过程。 展开更多
关键词 水系锌离子电池 二氧化锰 F掺杂 氧缺陷 正极材料
下载PDF
5Cr油套管钢在含Cl^(-)的CO_(2)环境中的腐蚀特性研究
20
作者 赵国仙 刘冉冉 +6 位作者 李琼玮 杨立华 孙雨来 丁浪勇 王映超 张思琦 宋洋 《表面技术》 EI CAS CSCD 北大核心 2024年第6期55-66,共12页
目的掌握油气井生产中CO_(2)腐蚀对油套管的影响规律,研究兼顾耐蚀性和经济性的5Cr油套管材料在含Cl^(-)的CO_(2)环境中不同时间下的腐蚀演变规律。方法采用XRD、XPS、SEM和EDS等技术分析5Cr油套管钢在不同时间下腐蚀产物膜的演变情况,... 目的掌握油气井生产中CO_(2)腐蚀对油套管的影响规律,研究兼顾耐蚀性和经济性的5Cr油套管材料在含Cl^(-)的CO_(2)环境中不同时间下的腐蚀演变规律。方法采用XRD、XPS、SEM和EDS等技术分析5Cr油套管钢在不同时间下腐蚀产物膜的演变情况,利用丝束电极(WBE)和阻抗测试(EIS)技术对其腐蚀电化学行为进行研究。结果5Cr油套管钢腐蚀后期的平均腐蚀速率约为初期的1/2,在腐蚀14 d后,腐蚀产物膜中的Cr富集大于30%,Cr、Fe质量比达到较高水平,约为基体的15倍。随着腐蚀的进行,电荷传递电阻和产物膜覆盖引起的电阻增大,电化学反应阻力增大。在腐蚀前期具有局部不均匀性,随着腐蚀的进行,电极腐蚀电位有负移现象,最终分布区间为−0.59~−0.61 V,电极表面阳极电流区域大幅减少。结论在腐蚀时间延长的条件下,5Cr油套管钢腐蚀产物膜的致密性增加,电荷传递电阻呈变大趋势。在产物膜下的5Cr油套管钢区域,电流发生由阴极向阳极极性转变的现象,产物膜存在的孔隙使5Cr油套管钢基体金属被腐蚀,从而导致阳极电流的出现。表面局部腐蚀电位阳极区的形成和扩展使其有产生点蚀的倾向,但腐蚀产物逐渐沉积在点蚀坑内壁,形成了Cr富集的保护性表面层,原发生点蚀区域由原阳极活性点位转变为阴极区,对其发展起到了抑制作用。 展开更多
关键词 5Cr油套管钢 CO_(2)腐蚀 腐蚀产物膜 Cr元素富集 电化学阻抗谱 丝束电极
下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部