以氧氯化锆和硝酸锰为主要原料,采用So l-G e l-VFD技术制备了M nO x/Z rO2超细粉体材料。用XRD,TG-DSC,TEM和BET等技术对试样进行了表征,用微反应器-气相色谱仪在线研究了试样不同配合比例对试样催化还原NO的活性的影响。结果表明:用So...以氧氯化锆和硝酸锰为主要原料,采用So l-G e l-VFD技术制备了M nO x/Z rO2超细粉体材料。用XRD,TG-DSC,TEM和BET等技术对试样进行了表征,用微反应器-气相色谱仪在线研究了试样不同配合比例对试样催化还原NO的活性的影响。结果表明:用So l-G e l-VFD技术可制得粒子尺寸约为20 nm、具有高催化活性的负载型M nO x/Z rO2纳米催化剂,锰由低价向高价转变。添加了C e组分能提高M nO x/Z rO2纳米催化剂催化还原NO的活性。展开更多
Four manganese oxide (MnO_(x)) catalysts with different phases were prepared via a hydrothermal method, and the toluene oxidation over the four manganese dioxide (MnO_(x)) catalysts was studied. Among the catalysts, ...Four manganese oxide (MnO_(x)) catalysts with different phases were prepared via a hydrothermal method, and the toluene oxidation over the four manganese dioxide (MnO_(x)) catalysts was studied. Among the catalysts, δ-MnO_(2) exhibits the best performance, excellent stability, and reusability. Moreover, δ-MnO_(2) possesses the highest specific surface area, with more exposed active sites compared to the other catalysts with which to make contact with toluene, leading to it exhibiting excellent activity. Furthermore, δ-MnO_(2) shows more lattice defects, Mn^(3+)/(Mn^(3+) + Mn^(4+)), oxygen vacancies, and surface adsorbed oxygen than the other catalysts, resulting in its excellent redox properties and catalytic performance. In addition, oxygen molecules adsorb on the oxygen vacancies of δ-MnO_(2), which are beneficial to the adsorption and oxidation of toluene, with benzyl alcohol, benzaldehyde, benzoic acid, and benzoic acid ester detected as specific intermediate products.展开更多
A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined ...A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined at 300 ℃ shows a superior activity for NO oxidation to NO2. On Ce(1)Mn(3)Ti catalyst, 58% NO conversion was obtained at 200 ℃ and 85% NO conversion at 250 ℃ with a GHSV of 41000 h-1, which was much higher than that over MnOx/TiO2 catalyst (48% at 250 ℃). Characterization results implied that the higher activity of Ce(1)Mn(3)Ti could be attributed to the enrichment of well-dispersed MnO2 on the surface and the abundance of Mn3+ and Zi3+ species. The addition of Ce into MnO2/TiO2 could improve oxygen storage capacity and facilitate oxygen mobility of the catalyst as shown by PL and ESR, so that its activity for NO oxidation could be enhanced. The effect of H2O and SO2 on the catalyst activity was also investigated.展开更多
The effects of atmospheres and precursors on MnOx/TiO2 catalysts were studied, which were prepared by the impregnation method and tested for their NOx conversion activity in ammonia selective catalytic reduction (NH3...The effects of atmospheres and precursors on MnOx/TiO2 catalysts were studied, which were prepared by the impregnation method and tested for their NOx conversion activity in ammonia selective catalytic reduction (NH3-SCR) reactions. Results showed that the manganese carbonate (MC) precursor caused mainly Mn2O3, while the manganese nitrate (MN) precursor resulted primarily in MnO2 and the manganese sulfate (MS) precursor was unchanged. The manganese acetate (MA) precursor leaded obtaining a mixture of Mn2O3 and Mn304. NOn conversion decreased in the following order: MA/TiO2 〉 MC/TiO2 〉 MN/TiO2 〉 MS/TiO2 〉 P25, with a calcination temperature of 773 K in air. Catalysts that were prepared by MA and calcined in oxygen performed strong interaction between Ti and Mn, while MnTiO3 was observed. Compared to the catalysts calcined in nitrogen, those calcined in oxygen had larger diameter and smaller surface area and pore. Catalysts that were prepared by MA and calcined in nitrogen tended to gain higher denitration rates than those in air, since they could be prepared with significant specific surface areas. NO., conversion decreased with calcination atmospheres: Nitrogen〉 Air〉 Oxygen. Meanwhile, amorphous Mn2O3 turned into crystalline Mn2O3, when the temperatures increased from 673 to 873 K.展开更多
MnOx-CeO2 composite catalysts were prepared by a coprecipitation method and tested for formaldehyde (HCHO) and carbon monoxide (CO) oxidation. X-ray photon spectroscopy (XPS) results indicated that the average o...MnOx-CeO2 composite catalysts were prepared by a coprecipitation method and tested for formaldehyde (HCHO) and carbon monoxide (CO) oxidation. X-ray photon spectroscopy (XPS) results indicated that the average oxidation state of surface Mn species in CeMn composite catalyst was higher compared to the pure MnOx. The enhancement of reactivity for HCHO oxidation was due to the activation of the lattice oxygen species in MnOx by the addition of CeO2, which was confirmed by the H2 temperature programmed reduction (HE-TPR) results. The remarkable enhancement of reactivity for CO oxidation by the addition of CeO2 was due to the active oxygen species generated on the CeO2 surface which directly participated in the reaction.展开更多
This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature....This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature. Five different methods, namely, mechanical mixing, impregnation,hydrothermal treatment, co‐precipitation, and a sol‐gel technique, were used to synthesizeMnOx‐CeO2 catalysts. The catalysts were characterized in detail, and an NH3‐SCR model reaction waschosen to evaluate the catalytic performance. The results showed that the preparation methodsaffected the catalytic performance in the order: hydrothermal treatment > sol‐gel > co‐precipitation> impregnation > mechanical mixing. This order correlated with the surface Ce3+ and Mn4+ content,oxygen vacancies and surface adsorbed oxygen species concentration, and the amount of acidic sitesand acidic strength. This trend is related to redox interactions between MnOx and CeO2. The catalystformed by a hydrothermal treatment exhibited excellent physicochemical properties, optimal catalyticperformance, and good H2O resistance in NH3‐SCR reaction. This was attributed to incorporationof Mnn+ into the CeO2 lattice to form a uniform ceria‐based solid solution (containing Mn‐O‐Cestructures). Strengthening of the electronic interactions between MnOx and CeO2, driven by thehigh‐temperature and high‐pressure conditions during the hydrothermal treatment also improved the catalyst characteristics. Thus, the hydrothermal treatment method is an efficient and environment‐friendly route to synthesizing low‐temperature denitrification (deNOx) catalysts.展开更多
Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods...Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods were used as supports to prepare MnOx/CeO2‐NR, MnOx/CZ‐NR, MnOx/CA‐NR, and MnOx/CS‐NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high‐resolution TEM, X‐ray diffraction, Raman and N2‐physisorption analyses, hydrogen temperature‐programmed reduction, ammonia temperature‐programmed desorption, in situ diffuse reflectance infrared Fourier‐transform spectroscopic analysis of the NH3 adsorption, and X‐ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3‐selective catalytic reduction (NH3‐SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS‐NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS‐NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2‐NR catalyst.展开更多
Catalytic properties of MnOx-FeOx complex oxide (hereafter denoted as Mn-Fe) catalysts modified with different loadings of chromium oxide were investigated by using the combination of physico-cbemical techniques, su...Catalytic properties of MnOx-FeOx complex oxide (hereafter denoted as Mn-Fe) catalysts modified with different loadings of chromium oxide were investigated by using the combination of physico-cbemical techniques, such as N2 physisorption, X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), in situ Fourier transform infrared spectroscopy (in situ FT-IR) and temperature-programmed reduction (TPR) and their catalytic activities were evaluated with the selective catalytic reduction (SCR) of NOx by NH3. It was found that with the addition of Cr, more NO could be removed in the low-temperature window (below 120 ℃). Among the tested catalysts, Mn-Fe- Cr (2 : 2 : 1) catalyst exhibited the best catalytic performance at 80 ℃ with the NO conversion higher than 90%. The combination of the reaction and characterization results indicated that (1) the strong interaction among tertiary metal oxides existed in the catalysts when Cr was appropriately added, which made the active components better dispersed with less agglomeration and sintering and the largest BET specific surface area could be obtained; (2) Cr improved the low-temperature reducibility of the catalyst and promoted the formation of the active intermediate (-NH3+), which favored the low-temperature SCR reaction.展开更多
为研究具有良好活性的低温选择性催化还原催化剂,针对目前Mn基材料低温选择性催化还原脱硝催化剂研究的局限性,以超氧自由基促进光催化为理论基础,N掺杂改性非金属为研究思路,采用溶胶凝胶法及过量浸渍法制备了N掺杂MnOx/TiO2催化剂,用...为研究具有良好活性的低温选择性催化还原催化剂,针对目前Mn基材料低温选择性催化还原脱硝催化剂研究的局限性,以超氧自由基促进光催化为理论基础,N掺杂改性非金属为研究思路,采用溶胶凝胶法及过量浸渍法制备了N掺杂MnOx/TiO2催化剂,用于锅炉烟气脱硝。提出了氧浓度、[NH3]/[NO]以及空速对脱硝效率的影响,结合X射线衍射表征,获得了N掺杂催化剂的反应工艺参数和相应的晶型变化特性。研究结果表明,N掺杂后,催化剂脱硝活性明显,并对催化剂N掺杂量、Mn负载量及催化剂煅烧温度进行了优化,并对优化结果进行分析。在此基础上,考察了含氧量,得出在O2浓度5%、[NH3]/[NO]为1.2时,空速28 000 h 1,反应温度180℃的条件下,掺N量为1%以及Mn负载量为5%的N掺杂MnOx/TiO2催化剂的脱硝活性稳定在90%左右。展开更多
文摘以氧氯化锆和硝酸锰为主要原料,采用So l-G e l-VFD技术制备了M nO x/Z rO2超细粉体材料。用XRD,TG-DSC,TEM和BET等技术对试样进行了表征,用微反应器-气相色谱仪在线研究了试样不同配合比例对试样催化还原NO的活性的影响。结果表明:用So l-G e l-VFD技术可制得粒子尺寸约为20 nm、具有高催化活性的负载型M nO x/Z rO2纳米催化剂,锰由低价向高价转变。添加了C e组分能提高M nO x/Z rO2纳米催化剂催化还原NO的活性。
基金supported by the National Natural Science Foundation of China (No. 21872096)the Natural Science Youth Fund of Henan Province (No. 202300410034)+3 种基金the Young Teacher Foundation of Henan University of Urban Construction (No. YCJQNGGJS201903)the Key Scientific and Technological Project of Henan Province (No. 182102311016)the Henan Key Scientific Research Projects (No. 20A610003)the Doctoral Research Start-up Project of Henan University of Urban Construction (No. 990/Q2017011)
文摘Four manganese oxide (MnO_(x)) catalysts with different phases were prepared via a hydrothermal method, and the toluene oxidation over the four manganese dioxide (MnO_(x)) catalysts was studied. Among the catalysts, δ-MnO_(2) exhibits the best performance, excellent stability, and reusability. Moreover, δ-MnO_(2) possesses the highest specific surface area, with more exposed active sites compared to the other catalysts with which to make contact with toluene, leading to it exhibiting excellent activity. Furthermore, δ-MnO_(2) shows more lattice defects, Mn^(3+)/(Mn^(3+) + Mn^(4+)), oxygen vacancies, and surface adsorbed oxygen than the other catalysts, resulting in its excellent redox properties and catalytic performance. In addition, oxygen molecules adsorb on the oxygen vacancies of δ-MnO_(2), which are beneficial to the adsorption and oxidation of toluene, with benzyl alcohol, benzaldehyde, benzoic acid, and benzoic acid ester detected as specific intermediate products.
基金supported by the National Natural Science Foundation of China (Grant No. 51078185)
文摘A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined at 300 ℃ shows a superior activity for NO oxidation to NO2. On Ce(1)Mn(3)Ti catalyst, 58% NO conversion was obtained at 200 ℃ and 85% NO conversion at 250 ℃ with a GHSV of 41000 h-1, which was much higher than that over MnOx/TiO2 catalyst (48% at 250 ℃). Characterization results implied that the higher activity of Ce(1)Mn(3)Ti could be attributed to the enrichment of well-dispersed MnO2 on the surface and the abundance of Mn3+ and Zi3+ species. The addition of Ce into MnO2/TiO2 could improve oxygen storage capacity and facilitate oxygen mobility of the catalyst as shown by PL and ESR, so that its activity for NO oxidation could be enhanced. The effect of H2O and SO2 on the catalyst activity was also investigated.
基金Funded by the National "Twelfth Five-Year" Plan for Science&Technology Support of China(No.2011BAE29B02))
文摘The effects of atmospheres and precursors on MnOx/TiO2 catalysts were studied, which were prepared by the impregnation method and tested for their NOx conversion activity in ammonia selective catalytic reduction (NH3-SCR) reactions. Results showed that the manganese carbonate (MC) precursor caused mainly Mn2O3, while the manganese nitrate (MN) precursor resulted primarily in MnO2 and the manganese sulfate (MS) precursor was unchanged. The manganese acetate (MA) precursor leaded obtaining a mixture of Mn2O3 and Mn304. NOn conversion decreased in the following order: MA/TiO2 〉 MC/TiO2 〉 MN/TiO2 〉 MS/TiO2 〉 P25, with a calcination temperature of 773 K in air. Catalysts that were prepared by MA and calcined in oxygen performed strong interaction between Ti and Mn, while MnTiO3 was observed. Compared to the catalysts calcined in nitrogen, those calcined in oxygen had larger diameter and smaller surface area and pore. Catalysts that were prepared by MA and calcined in nitrogen tended to gain higher denitration rates than those in air, since they could be prepared with significant specific surface areas. NO., conversion decreased with calcination atmospheres: Nitrogen〉 Air〉 Oxygen. Meanwhile, amorphous Mn2O3 turned into crystalline Mn2O3, when the temperatures increased from 673 to 873 K.
基金supported by the Zhejiang Provincial Natural Science Foundation (Y407020)the Qianjiang Talent Program of Zhejiang Province (QJD0702098)Xinmiao Talent Program of Zhejiang Province (2007R40G2030045)
文摘MnOx-CeO2 composite catalysts were prepared by a coprecipitation method and tested for formaldehyde (HCHO) and carbon monoxide (CO) oxidation. X-ray photon spectroscopy (XPS) results indicated that the average oxidation state of surface Mn species in CeMn composite catalyst was higher compared to the pure MnOx. The enhancement of reactivity for HCHO oxidation was due to the activation of the lattice oxygen species in MnOx by the addition of CeO2, which was confirmed by the H2 temperature programmed reduction (HE-TPR) results. The remarkable enhancement of reactivity for CO oxidation by the addition of CeO2 was due to the active oxygen species generated on the CeO2 surface which directly participated in the reaction.
基金supported by the National Natural Science Foundation of China (No. 21507130)the Open Project Program of Beijing National Laboratory for Molecular Sciences (No. 20140142)+3 种基金the Open Project Program of Chongqing Key Laboratory of Environmental Materials and Remediation Technology from Chongqing University of Arts and Sciences (No. CEK1405)the Open Project Program of Jiangsu Key Laboratory of Vehicle Emissions Control (No. OVEC001)the Open Project Program of Chongqing Key Laboratory of Catalysis and Functional Organic Molecules from Chongqing Technology and Business University (1456029)the Chongqing Science & Technology Commission (Nos. cstc2016jcyj A0070, cstc2014pt-gc20002, cstckjcxljrc13)~~
文摘This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature. Five different methods, namely, mechanical mixing, impregnation,hydrothermal treatment, co‐precipitation, and a sol‐gel technique, were used to synthesizeMnOx‐CeO2 catalysts. The catalysts were characterized in detail, and an NH3‐SCR model reaction waschosen to evaluate the catalytic performance. The results showed that the preparation methodsaffected the catalytic performance in the order: hydrothermal treatment > sol‐gel > co‐precipitation> impregnation > mechanical mixing. This order correlated with the surface Ce3+ and Mn4+ content,oxygen vacancies and surface adsorbed oxygen species concentration, and the amount of acidic sitesand acidic strength. This trend is related to redox interactions between MnOx and CeO2. The catalystformed by a hydrothermal treatment exhibited excellent physicochemical properties, optimal catalyticperformance, and good H2O resistance in NH3‐SCR reaction. This was attributed to incorporationof Mnn+ into the CeO2 lattice to form a uniform ceria‐based solid solution (containing Mn‐O‐Cestructures). Strengthening of the electronic interactions between MnOx and CeO2, driven by thehigh‐temperature and high‐pressure conditions during the hydrothermal treatment also improved the catalyst characteristics. Thus, the hydrothermal treatment method is an efficient and environment‐friendly route to synthesizing low‐temperature denitrification (deNOx) catalysts.
基金supported by National Natural Science Foundation of China (21876168, 21507130)Youth Innovation Promotion Association of CAS (2019376)the Chongqing Science & Technology Commission (cstc2016jcyjA0070, cstckjcxljrc13)~~
文摘Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods were used as supports to prepare MnOx/CeO2‐NR, MnOx/CZ‐NR, MnOx/CA‐NR, and MnOx/CS‐NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high‐resolution TEM, X‐ray diffraction, Raman and N2‐physisorption analyses, hydrogen temperature‐programmed reduction, ammonia temperature‐programmed desorption, in situ diffuse reflectance infrared Fourier‐transform spectroscopic analysis of the NH3 adsorption, and X‐ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3‐selective catalytic reduction (NH3‐SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS‐NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS‐NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2‐NR catalyst.
基金supported by Jiangsu Natural Science Foundation (No. BK2012347)the National High Technology and Development Program of China (863 Programs, No.2007AA061802)
文摘Catalytic properties of MnOx-FeOx complex oxide (hereafter denoted as Mn-Fe) catalysts modified with different loadings of chromium oxide were investigated by using the combination of physico-cbemical techniques, such as N2 physisorption, X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), in situ Fourier transform infrared spectroscopy (in situ FT-IR) and temperature-programmed reduction (TPR) and their catalytic activities were evaluated with the selective catalytic reduction (SCR) of NOx by NH3. It was found that with the addition of Cr, more NO could be removed in the low-temperature window (below 120 ℃). Among the tested catalysts, Mn-Fe- Cr (2 : 2 : 1) catalyst exhibited the best catalytic performance at 80 ℃ with the NO conversion higher than 90%. The combination of the reaction and characterization results indicated that (1) the strong interaction among tertiary metal oxides existed in the catalysts when Cr was appropriately added, which made the active components better dispersed with less agglomeration and sintering and the largest BET specific surface area could be obtained; (2) Cr improved the low-temperature reducibility of the catalyst and promoted the formation of the active intermediate (-NH3+), which favored the low-temperature SCR reaction.
文摘为研究具有良好活性的低温选择性催化还原催化剂,针对目前Mn基材料低温选择性催化还原脱硝催化剂研究的局限性,以超氧自由基促进光催化为理论基础,N掺杂改性非金属为研究思路,采用溶胶凝胶法及过量浸渍法制备了N掺杂MnOx/TiO2催化剂,用于锅炉烟气脱硝。提出了氧浓度、[NH3]/[NO]以及空速对脱硝效率的影响,结合X射线衍射表征,获得了N掺杂催化剂的反应工艺参数和相应的晶型变化特性。研究结果表明,N掺杂后,催化剂脱硝活性明显,并对催化剂N掺杂量、Mn负载量及催化剂煅烧温度进行了优化,并对优化结果进行分析。在此基础上,考察了含氧量,得出在O2浓度5%、[NH3]/[NO]为1.2时,空速28 000 h 1,反应温度180℃的条件下,掺N量为1%以及Mn负载量为5%的N掺杂MnOx/TiO2催化剂的脱硝活性稳定在90%左右。