Four manganese oxide (MnO_(x)) catalysts with different phases were prepared via a hydrothermal method, and the toluene oxidation over the four manganese dioxide (MnO_(x)) catalysts was studied. Among the catalysts, ...Four manganese oxide (MnO_(x)) catalysts with different phases were prepared via a hydrothermal method, and the toluene oxidation over the four manganese dioxide (MnO_(x)) catalysts was studied. Among the catalysts, δ-MnO_(2) exhibits the best performance, excellent stability, and reusability. Moreover, δ-MnO_(2) possesses the highest specific surface area, with more exposed active sites compared to the other catalysts with which to make contact with toluene, leading to it exhibiting excellent activity. Furthermore, δ-MnO_(2) shows more lattice defects, Mn^(3+)/(Mn^(3+) + Mn^(4+)), oxygen vacancies, and surface adsorbed oxygen than the other catalysts, resulting in its excellent redox properties and catalytic performance. In addition, oxygen molecules adsorb on the oxygen vacancies of δ-MnO_(2), which are beneficial to the adsorption and oxidation of toluene, with benzyl alcohol, benzaldehyde, benzoic acid, and benzoic acid ester detected as specific intermediate products.展开更多
This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature....This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature. Five different methods, namely, mechanical mixing, impregnation,hydrothermal treatment, co‐precipitation, and a sol‐gel technique, were used to synthesizeMnOx‐CeO2 catalysts. The catalysts were characterized in detail, and an NH3‐SCR model reaction waschosen to evaluate the catalytic performance. The results showed that the preparation methodsaffected the catalytic performance in the order: hydrothermal treatment > sol‐gel > co‐precipitation> impregnation > mechanical mixing. This order correlated with the surface Ce3+ and Mn4+ content,oxygen vacancies and surface adsorbed oxygen species concentration, and the amount of acidic sitesand acidic strength. This trend is related to redox interactions between MnOx and CeO2. The catalystformed by a hydrothermal treatment exhibited excellent physicochemical properties, optimal catalyticperformance, and good H2O resistance in NH3‐SCR reaction. This was attributed to incorporationof Mnn+ into the CeO2 lattice to form a uniform ceria‐based solid solution (containing Mn‐O‐Cestructures). Strengthening of the electronic interactions between MnOx and CeO2, driven by thehigh‐temperature and high‐pressure conditions during the hydrothermal treatment also improved the catalyst characteristics. Thus, the hydrothermal treatment method is an efficient and environment‐friendly route to synthesizing low‐temperature denitrification (deNOx) catalysts.展开更多
A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined ...A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined at 300 ℃ shows a superior activity for NO oxidation to NO2. On Ce(1)Mn(3)Ti catalyst, 58% NO conversion was obtained at 200 ℃ and 85% NO conversion at 250 ℃ with a GHSV of 41000 h-1, which was much higher than that over MnOx/TiO2 catalyst (48% at 250 ℃). Characterization results implied that the higher activity of Ce(1)Mn(3)Ti could be attributed to the enrichment of well-dispersed MnO2 on the surface and the abundance of Mn3+ and Zi3+ species. The addition of Ce into MnO2/TiO2 could improve oxygen storage capacity and facilitate oxygen mobility of the catalyst as shown by PL and ESR, so that its activity for NO oxidation could be enhanced. The effect of H2O and SO2 on the catalyst activity was also investigated.展开更多
The effects of atmospheres and precursors on MnOx/TiO2 catalysts were studied, which were prepared by the impregnation method and tested for their NOx conversion activity in ammonia selective catalytic reduction (NH3...The effects of atmospheres and precursors on MnOx/TiO2 catalysts were studied, which were prepared by the impregnation method and tested for their NOx conversion activity in ammonia selective catalytic reduction (NH3-SCR) reactions. Results showed that the manganese carbonate (MC) precursor caused mainly Mn2O3, while the manganese nitrate (MN) precursor resulted primarily in MnO2 and the manganese sulfate (MS) precursor was unchanged. The manganese acetate (MA) precursor leaded obtaining a mixture of Mn2O3 and Mn304. NOn conversion decreased in the following order: MA/TiO2 〉 MC/TiO2 〉 MN/TiO2 〉 MS/TiO2 〉 P25, with a calcination temperature of 773 K in air. Catalysts that were prepared by MA and calcined in oxygen performed strong interaction between Ti and Mn, while MnTiO3 was observed. Compared to the catalysts calcined in nitrogen, those calcined in oxygen had larger diameter and smaller surface area and pore. Catalysts that were prepared by MA and calcined in nitrogen tended to gain higher denitration rates than those in air, since they could be prepared with significant specific surface areas. NO., conversion decreased with calcination atmospheres: Nitrogen〉 Air〉 Oxygen. Meanwhile, amorphous Mn2O3 turned into crystalline Mn2O3, when the temperatures increased from 673 to 873 K.展开更多
Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods...Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods were used as supports to prepare MnOx/CeO2‐NR, MnOx/CZ‐NR, MnOx/CA‐NR, and MnOx/CS‐NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high‐resolution TEM, X‐ray diffraction, Raman and N2‐physisorption analyses, hydrogen temperature‐programmed reduction, ammonia temperature‐programmed desorption, in situ diffuse reflectance infrared Fourier‐transform spectroscopic analysis of the NH3 adsorption, and X‐ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3‐selective catalytic reduction (NH3‐SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS‐NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS‐NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2‐NR catalyst.展开更多
Processes based on non-thermal plasma(NTP) for indoor air treatment inevitably lead to the formation of toxic by-products such as ozone(O3) and nitrogen oxides(NOx). Adding a step of heterogeneous catalysis in s...Processes based on non-thermal plasma(NTP) for indoor air treatment inevitably lead to the formation of toxic by-products such as ozone(O3) and nitrogen oxides(NOx). Adding a step of heterogeneous catalysis in series with NTP could allow for the decomposition of the by-products. Therefore, different catalysts were developed based on transition metal oxides, such as NiOx, CoOxand MnOxwith different weight percentage 1, 5 and 10 wt.%,deposited on a γ-Al2O3 support. The O3 removal efficiency(ORE) and the NOxremoval efficiency(NRE) were very encouraging in dry air: about 65% and 80%, respectively, by using2 g 5 wt.% MnOx/Al2O3 catalyst under the experimental conditions. However, strongly negative effects of relative humidity(RH) on the catalytic decomposition performance were observed. To overcome this limitation, the catalyst surface was modified to make it hydrophobic using a cost-effective chemical grafting method. This treatment consisted in impregnating the 5 wt.% MnOx/Al2O3 catalyst with different trichloro(alkyl)silanes(TCAS).The effects of different linker lengths and amounts of TCAS for the hydrophobicity and the decomposition performance of surface-modified catalysts under humid conditions were investigated. Our results show that the surface-modified catalyst with the shortest linker and 0.25 mmol/gcatof modifying agent represents the best catalytic decomposition performance for O3. Its ORE is 41% at 60% RH, which is twice that of the non-modified catalyst.展开更多
基金supported by the National Natural Science Foundation of China (No. 21872096)the Natural Science Youth Fund of Henan Province (No. 202300410034)+3 种基金the Young Teacher Foundation of Henan University of Urban Construction (No. YCJQNGGJS201903)the Key Scientific and Technological Project of Henan Province (No. 182102311016)the Henan Key Scientific Research Projects (No. 20A610003)the Doctoral Research Start-up Project of Henan University of Urban Construction (No. 990/Q2017011)
文摘Four manganese oxide (MnO_(x)) catalysts with different phases were prepared via a hydrothermal method, and the toluene oxidation over the four manganese dioxide (MnO_(x)) catalysts was studied. Among the catalysts, δ-MnO_(2) exhibits the best performance, excellent stability, and reusability. Moreover, δ-MnO_(2) possesses the highest specific surface area, with more exposed active sites compared to the other catalysts with which to make contact with toluene, leading to it exhibiting excellent activity. Furthermore, δ-MnO_(2) shows more lattice defects, Mn^(3+)/(Mn^(3+) + Mn^(4+)), oxygen vacancies, and surface adsorbed oxygen than the other catalysts, resulting in its excellent redox properties and catalytic performance. In addition, oxygen molecules adsorb on the oxygen vacancies of δ-MnO_(2), which are beneficial to the adsorption and oxidation of toluene, with benzyl alcohol, benzaldehyde, benzoic acid, and benzoic acid ester detected as specific intermediate products.
基金supported by the National Natural Science Foundation of China (No. 21507130)the Open Project Program of Beijing National Laboratory for Molecular Sciences (No. 20140142)+3 种基金the Open Project Program of Chongqing Key Laboratory of Environmental Materials and Remediation Technology from Chongqing University of Arts and Sciences (No. CEK1405)the Open Project Program of Jiangsu Key Laboratory of Vehicle Emissions Control (No. OVEC001)the Open Project Program of Chongqing Key Laboratory of Catalysis and Functional Organic Molecules from Chongqing Technology and Business University (1456029)the Chongqing Science & Technology Commission (Nos. cstc2016jcyj A0070, cstc2014pt-gc20002, cstckjcxljrc13)~~
文摘This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature. Five different methods, namely, mechanical mixing, impregnation,hydrothermal treatment, co‐precipitation, and a sol‐gel technique, were used to synthesizeMnOx‐CeO2 catalysts. The catalysts were characterized in detail, and an NH3‐SCR model reaction waschosen to evaluate the catalytic performance. The results showed that the preparation methodsaffected the catalytic performance in the order: hydrothermal treatment > sol‐gel > co‐precipitation> impregnation > mechanical mixing. This order correlated with the surface Ce3+ and Mn4+ content,oxygen vacancies and surface adsorbed oxygen species concentration, and the amount of acidic sitesand acidic strength. This trend is related to redox interactions between MnOx and CeO2. The catalystformed by a hydrothermal treatment exhibited excellent physicochemical properties, optimal catalyticperformance, and good H2O resistance in NH3‐SCR reaction. This was attributed to incorporationof Mnn+ into the CeO2 lattice to form a uniform ceria‐based solid solution (containing Mn‐O‐Cestructures). Strengthening of the electronic interactions between MnOx and CeO2, driven by thehigh‐temperature and high‐pressure conditions during the hydrothermal treatment also improved the catalyst characteristics. Thus, the hydrothermal treatment method is an efficient and environment‐friendly route to synthesizing low‐temperature denitrification (deNOx) catalysts.
基金supported by the National Natural Science Foundation of China (Grant No. 51078185)
文摘A series of Ce-doped MnOx/TiO2 catalysts were prepared by impregnation method and used for catalytic oxidation of NO in the presence of excess O2. The sample with the Ce doping concentration of Ce/Mn=l/3 and calcined at 300 ℃ shows a superior activity for NO oxidation to NO2. On Ce(1)Mn(3)Ti catalyst, 58% NO conversion was obtained at 200 ℃ and 85% NO conversion at 250 ℃ with a GHSV of 41000 h-1, which was much higher than that over MnOx/TiO2 catalyst (48% at 250 ℃). Characterization results implied that the higher activity of Ce(1)Mn(3)Ti could be attributed to the enrichment of well-dispersed MnO2 on the surface and the abundance of Mn3+ and Zi3+ species. The addition of Ce into MnO2/TiO2 could improve oxygen storage capacity and facilitate oxygen mobility of the catalyst as shown by PL and ESR, so that its activity for NO oxidation could be enhanced. The effect of H2O and SO2 on the catalyst activity was also investigated.
基金Funded by the National "Twelfth Five-Year" Plan for Science&Technology Support of China(No.2011BAE29B02))
文摘The effects of atmospheres and precursors on MnOx/TiO2 catalysts were studied, which were prepared by the impregnation method and tested for their NOx conversion activity in ammonia selective catalytic reduction (NH3-SCR) reactions. Results showed that the manganese carbonate (MC) precursor caused mainly Mn2O3, while the manganese nitrate (MN) precursor resulted primarily in MnO2 and the manganese sulfate (MS) precursor was unchanged. The manganese acetate (MA) precursor leaded obtaining a mixture of Mn2O3 and Mn304. NOn conversion decreased in the following order: MA/TiO2 〉 MC/TiO2 〉 MN/TiO2 〉 MS/TiO2 〉 P25, with a calcination temperature of 773 K in air. Catalysts that were prepared by MA and calcined in oxygen performed strong interaction between Ti and Mn, while MnTiO3 was observed. Compared to the catalysts calcined in nitrogen, those calcined in oxygen had larger diameter and smaller surface area and pore. Catalysts that were prepared by MA and calcined in nitrogen tended to gain higher denitration rates than those in air, since they could be prepared with significant specific surface areas. NO., conversion decreased with calcination atmospheres: Nitrogen〉 Air〉 Oxygen. Meanwhile, amorphous Mn2O3 turned into crystalline Mn2O3, when the temperatures increased from 673 to 873 K.
基金supported by National Natural Science Foundation of China (21876168, 21507130)Youth Innovation Promotion Association of CAS (2019376)the Chongqing Science & Technology Commission (cstc2016jcyjA0070, cstckjcxljrc13)~~
文摘Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods were used as supports to prepare MnOx/CeO2‐NR, MnOx/CZ‐NR, MnOx/CA‐NR, and MnOx/CS‐NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high‐resolution TEM, X‐ray diffraction, Raman and N2‐physisorption analyses, hydrogen temperature‐programmed reduction, ammonia temperature‐programmed desorption, in situ diffuse reflectance infrared Fourier‐transform spectroscopic analysis of the NH3 adsorption, and X‐ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3‐selective catalytic reduction (NH3‐SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS‐NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS‐NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2‐NR catalyst.
基金financially supported by French Ministry of Higher Education and Research (No. 2015/386)
文摘Processes based on non-thermal plasma(NTP) for indoor air treatment inevitably lead to the formation of toxic by-products such as ozone(O3) and nitrogen oxides(NOx). Adding a step of heterogeneous catalysis in series with NTP could allow for the decomposition of the by-products. Therefore, different catalysts were developed based on transition metal oxides, such as NiOx, CoOxand MnOxwith different weight percentage 1, 5 and 10 wt.%,deposited on a γ-Al2O3 support. The O3 removal efficiency(ORE) and the NOxremoval efficiency(NRE) were very encouraging in dry air: about 65% and 80%, respectively, by using2 g 5 wt.% MnOx/Al2O3 catalyst under the experimental conditions. However, strongly negative effects of relative humidity(RH) on the catalytic decomposition performance were observed. To overcome this limitation, the catalyst surface was modified to make it hydrophobic using a cost-effective chemical grafting method. This treatment consisted in impregnating the 5 wt.% MnOx/Al2O3 catalyst with different trichloro(alkyl)silanes(TCAS).The effects of different linker lengths and amounts of TCAS for the hydrophobicity and the decomposition performance of surface-modified catalysts under humid conditions were investigated. Our results show that the surface-modified catalyst with the shortest linker and 0.25 mmol/gcatof modifying agent represents the best catalytic decomposition performance for O3. Its ORE is 41% at 60% RH, which is twice that of the non-modified catalyst.