The nano-sized BaTiO3:La3+ powders were prepared by sol-gel process using butyl phthalate, barium acetate and lanthanum oxide as raw material, and these samples were tested by means of TG-DTA, XRD and SEM. The results...The nano-sized BaTiO3:La3+ powders were prepared by sol-gel process using butyl phthalate, barium acetate and lanthanum oxide as raw material, and these samples were tested by means of TG-DTA, XRD and SEM. The results indicate that with the annealing temperature and the doped concentration rising, the powders' particle sizes will increase and decrease respectively. When annealing temperature is 900℃and doped concentration is 7%, the phase is cubic without other phases, and the particle size of power is 43 .34 nm.展开更多
The effects of rare earth doping on the formation process of α-FeOOH crystallite and the properties of γ-Fe2O3 magnetic powder were investigated. The growth of needle α FeOOH crystallite was completed by the basic ...The effects of rare earth doping on the formation process of α-FeOOH crystallite and the properties of γ-Fe2O3 magnetic powder were investigated. The growth of needle α FeOOH crystallite was completed by the basic process. The experimental results show that the rare earth doping can increase the aspect axial ratio of needle α-FeOOH grains. its anti-sintering capability during the heat-treatment and the thermostability of γ-Fe2O3 magnetic properties. The magnetic properties of γ-Fe2O3 doping with rare earth are as follows: the coercivity Hc=36.3 kA/m (445 Oe), the ratio saturation magnetization σs=90.4μWbm/kg (72 emu/g), the ratio remanent magnetization σr=54 μWbm/kg (43 emu/g), and the temperature coefficient of remanent magnetization of γ-Fe2O3 doping with 0.1 mol% Dy can reach -5 ×10-4℃-1.展开更多
Scandia and rhenium doped tungsten powders were prepared by solid-liquid doping combined with two-step reduction method. The particle size of doped tungsten and distribution of scandia and rhenium were studied by SEM,...Scandia and rhenium doped tungsten powders were prepared by solid-liquid doping combined with two-step reduction method. The particle size of doped tungsten and distribution of scandia and rhenium were studied by SEM, EDS, XRD and granularity analysis. Experimental results showed that scandia distributed evenly on the surface of tungsten particles. Addition of scandia and rhenium decreased the particle size of doped tungsten, and the more the content of scandia and rhenium, the smaller the doped tungsten particles. Tungsten powders doped with 3 % Sc2O3 and 3 % Re (mass fraction) had an average size of about 80 nm in diameter. The mechanism of the decrease in the tungsten particle size was discussed.展开更多
substitutes tion, high loosely dis Neodymium doped-yttrium aluminum garnet (Nd : YAG) transparent polycrystalline ceramics already become of single crystals because they are provided with easy fabrication, low cost...substitutes tion, high loosely dis Neodymium doped-yttrium aluminum garnet (Nd : YAG) transparent polycrystalline ceramics already become of single crystals because they are provided with easy fabrication, low cost, large size, highly doped concentraheat conductivity, mass fabrication, multi-layers and multi-filnctions. The Nd:YAG precursor powders with persed , slightly agglomerated, super fine and YAG cubic crystal phase were synthesized at 1100 ℃ by the homogeneous precipitation method, using Nd2O3, Y2O3, Al(NO3)3·9H2O and urea as raw materials, (NH4)2SO4 as electrical stabilizer, TEOS as sintering additive. The Nd:YAG transparent ceramics were prepared after being vacuum sintered at 1700 ℃ for 5 h. The Nd:YAG ceramic materials were characterized by the TG-DTA, XRD, FT-IR, TEM, FEG-ESEM and FT-PL. The results show that the crystallization temperature of YAG is 850 ℃ and the intermediate crystal phase YAP forming during the heat treatment transforms to YAG cubic crystal phase at 1050 ℃. The lasing wavelength of (Nd0.01 Y0.99)3Al5O12 transparent ceramics is 1.065 μm and there exists a slight red-shift compared to the single crystal with the same chemical composition. The optical transmittance is 45 % in the visible light and 58 % in the near infrared light and the optical transmittance descends with the decreasing the wavelength.展开更多
文摘The nano-sized BaTiO3:La3+ powders were prepared by sol-gel process using butyl phthalate, barium acetate and lanthanum oxide as raw material, and these samples were tested by means of TG-DTA, XRD and SEM. The results indicate that with the annealing temperature and the doped concentration rising, the powders' particle sizes will increase and decrease respectively. When annealing temperature is 900℃and doped concentration is 7%, the phase is cubic without other phases, and the particle size of power is 43 .34 nm.
文摘The effects of rare earth doping on the formation process of α-FeOOH crystallite and the properties of γ-Fe2O3 magnetic powder were investigated. The growth of needle α FeOOH crystallite was completed by the basic process. The experimental results show that the rare earth doping can increase the aspect axial ratio of needle α-FeOOH grains. its anti-sintering capability during the heat-treatment and the thermostability of γ-Fe2O3 magnetic properties. The magnetic properties of γ-Fe2O3 doping with rare earth are as follows: the coercivity Hc=36.3 kA/m (445 Oe), the ratio saturation magnetization σs=90.4μWbm/kg (72 emu/g), the ratio remanent magnetization σr=54 μWbm/kg (43 emu/g), and the temperature coefficient of remanent magnetization of γ-Fe2O3 doping with 0.1 mol% Dy can reach -5 ×10-4℃-1.
基金Project supported by the National Natural Science Foundation of China (50571001)the National "863"Project(2006AA03Z524)
文摘Scandia and rhenium doped tungsten powders were prepared by solid-liquid doping combined with two-step reduction method. The particle size of doped tungsten and distribution of scandia and rhenium were studied by SEM, EDS, XRD and granularity analysis. Experimental results showed that scandia distributed evenly on the surface of tungsten particles. Addition of scandia and rhenium decreased the particle size of doped tungsten, and the more the content of scandia and rhenium, the smaller the doped tungsten particles. Tungsten powders doped with 3 % Sc2O3 and 3 % Re (mass fraction) had an average size of about 80 nm in diameter. The mechanism of the decrease in the tungsten particle size was discussed.
文摘substitutes tion, high loosely dis Neodymium doped-yttrium aluminum garnet (Nd : YAG) transparent polycrystalline ceramics already become of single crystals because they are provided with easy fabrication, low cost, large size, highly doped concentraheat conductivity, mass fabrication, multi-layers and multi-filnctions. The Nd:YAG precursor powders with persed , slightly agglomerated, super fine and YAG cubic crystal phase were synthesized at 1100 ℃ by the homogeneous precipitation method, using Nd2O3, Y2O3, Al(NO3)3·9H2O and urea as raw materials, (NH4)2SO4 as electrical stabilizer, TEOS as sintering additive. The Nd:YAG transparent ceramics were prepared after being vacuum sintered at 1700 ℃ for 5 h. The Nd:YAG ceramic materials were characterized by the TG-DTA, XRD, FT-IR, TEM, FEG-ESEM and FT-PL. The results show that the crystallization temperature of YAG is 850 ℃ and the intermediate crystal phase YAP forming during the heat treatment transforms to YAG cubic crystal phase at 1050 ℃. The lasing wavelength of (Nd0.01 Y0.99)3Al5O12 transparent ceramics is 1.065 μm and there exists a slight red-shift compared to the single crystal with the same chemical composition. The optical transmittance is 45 % in the visible light and 58 % in the near infrared light and the optical transmittance descends with the decreasing the wavelength.