Si/a-C:H(Ag)multilayer films with different modulation periods are prepared to test their potential applications in human body.The composition,microstructure,mechanical and tribological properties in the simulated bod...Si/a-C:H(Ag)multilayer films with different modulation periods are prepared to test their potential applications in human body.The composition,microstructure,mechanical and tribological properties in the simulated body fluid are investigated.The results show the concentration of Ag first decreases and then increases with the modulation period decreasing from 984 nm to 250 nm.Whereas the C content has an opposite variation trend.Notably,the concentration of Ag plays a more important role than the modulation period in the properties of the multilayer film.The a-C:H sublayer of the film with an appropriate Ag concentration(8.97 at.%)(modulation period of 512 nm)maintains the highest sp3/sp2 ratio,surface roughness and hardness,and excellent tribological property in the stimulated body fluid.An appropriate number of Ag atoms and size of Ag atom allow the Ag atoms to easily enter into the contact interface for load bearing and lubricating.This work proves that the Ag nanoparticles in the a-C:H sublayer plays a more important role in the tribological properties of the composite-multilayer film in stimulated body fluid condition.展开更多
The demand to enhance the optical resolution, to structure and observe ever smaller details, has pushed the way towards the EUV and soft X-rays. Induced mainly by the production of more powerful electronic circuits wi...The demand to enhance the optical resolution, to structure and observe ever smaller details, has pushed the way towards the EUV and soft X-rays. Induced mainly by the production of more powerful electronic circuits with the aid of projection lithography, optics developments in recent years can be characterized by the use of electromagnetic radiation with smaller wavelength. The good prospects of the EUV and soft X-rays for next generation lithography systems (λ=13.5 nm), microscopy in the “water window” (λ=2.3~4.4 nm), astronomy (λ=5~31 nm), spectroscopy, plasma diagnostics and EUV/soft X-ray laser research have led to considerable progress in the development of different multilayer optics. Since optical systems in the EUV/soft X-ray spectral region consist of several mirror elements a maximum reflectivity of each multilayer is essential for a high throughput. This paper covers recent results of the enhanced spectral behavior of Mo/Si, Cr/Sc and Sc/Si multilayer optics.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51801133,51505318,and 51671140)the Science and Technology Major Project of Shanxi Province,China(Grant No.20181102013)+1 种基金the Shanxi Provincial Youth Fund,China(Grant No.201801D221135)the“1331 Project”Engineering Research Center of Shanxi Province,China(Grant No.PT201801).
文摘Si/a-C:H(Ag)multilayer films with different modulation periods are prepared to test their potential applications in human body.The composition,microstructure,mechanical and tribological properties in the simulated body fluid are investigated.The results show the concentration of Ag first decreases and then increases with the modulation period decreasing from 984 nm to 250 nm.Whereas the C content has an opposite variation trend.Notably,the concentration of Ag plays a more important role than the modulation period in the properties of the multilayer film.The a-C:H sublayer of the film with an appropriate Ag concentration(8.97 at.%)(modulation period of 512 nm)maintains the highest sp3/sp2 ratio,surface roughness and hardness,and excellent tribological property in the stimulated body fluid.An appropriate number of Ag atoms and size of Ag atom allow the Ag atoms to easily enter into the contact interface for load bearing and lubricating.This work proves that the Ag nanoparticles in the a-C:H sublayer plays a more important role in the tribological properties of the composite-multilayer film in stimulated body fluid condition.
文摘The demand to enhance the optical resolution, to structure and observe ever smaller details, has pushed the way towards the EUV and soft X-rays. Induced mainly by the production of more powerful electronic circuits with the aid of projection lithography, optics developments in recent years can be characterized by the use of electromagnetic radiation with smaller wavelength. The good prospects of the EUV and soft X-rays for next generation lithography systems (λ=13.5 nm), microscopy in the “water window” (λ=2.3~4.4 nm), astronomy (λ=5~31 nm), spectroscopy, plasma diagnostics and EUV/soft X-ray laser research have led to considerable progress in the development of different multilayer optics. Since optical systems in the EUV/soft X-ray spectral region consist of several mirror elements a maximum reflectivity of each multilayer is essential for a high throughput. This paper covers recent results of the enhanced spectral behavior of Mo/Si, Cr/Sc and Sc/Si multilayer optics.