To clarify the correlation of single-crystalline structure with corrosion performance in high-strength TiAl alloys, electrochemical and surface characterization was performed by comparing Ti–45Al–8Nb dual-phase sing...To clarify the correlation of single-crystalline structure with corrosion performance in high-strength TiAl alloys, electrochemical and surface characterization was performed by comparing Ti–45Al–8Nb dual-phase single crystals with their polycrystalline counterparts in NaCl solution. Polarization curves show a lower corrosion rate and a higher pitting potential of ~280 mV for the dual-phase single crystals. Electrochemical impedance spectroscopy and potentiostatic polarization plots revealed a higher impedance of the charge transfer through the compact passive film. Surface composition analysis indicated a compact film with more content of Nb, as twice as that in the film on the polycrystals.Our results reflect that the dual-phase Ti–45Al–8Nb single crystals possess a higher corrosion resistance in NaCl solution, compared with their polycrystalline counterpart, arising from a more homogeneous microstructure and composition distribution.展开更多
The isothermal oxidation behavior of the second generation single crystal superalloy DD6 was studied at 1050 ℃ and 1100 ℃ in ambient atmosphere.Morphology of oxides was examined by SEM and their composition was anal...The isothermal oxidation behavior of the second generation single crystal superalloy DD6 was studied at 1050 ℃ and 1100 ℃ in ambient atmosphere.Morphology of oxides was examined by SEM and their composition was analyzed by XRD and EDS.The experimental results show that DD6 alloy obeys subparabolic rate law during oxidation of 100 h at 1050 ℃ and 1100 ℃.The oxide scale exposed at 1050 ℃ is made up of an outer NiO layer with a small amount of Al2O3 and an inner Al2O3 layer.The oxide scale exposed at 1100 ℃ is made up of an outer Al2O3 layer with a small amount of NiO,an intermediate layer,mainly composed of Cr2O3 and TaO2,and an inner Al2O3 layer.The γ'-free layer was formed under the oxide scale at two temperatures.展开更多
Two experimental single crystal superalloys, the Ru-free alloy and the Ru-containing alloy with [001 ] orientation, were cast in a directionally solidified furnace, while other alloying element contents were kept unch...Two experimental single crystal superalloys, the Ru-free alloy and the Ru-containing alloy with [001 ] orientation, were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Ru on the microstructure and phase stability of the single crystal superalloy were investigated, y' directional coarsening and rafting were observed in the Ru-free alloy and Ru-containing alloy after long-term aging at 1070~C for 800 h. Needle-shaped o topologically close packed (TCP) phases precipitated and grew along the fixed direction in both the alloys. The precipitating rate and volume fraction of TCP phases decreased significantly by adding Ru. The compositions ofy and y' phases measured using an energy-dispersive X-ray spectroscope (EDS) in transmission electron microscopy (TEM) analysis showed that the addition of Ru lessened the partition ratio of TCP forming elements, Re, W and Mo, and decreased the satu- ration degrees of these elements in y phase, which can enable the Ru-containing alloy to be more resistant to the formation of TCP phases. It is indicated that the addition of Ru to the Ni-based single crystal superalloy with high content of the refractory alloying element can enhance phase stability.展开更多
The microstructual evolution and stability of a second generation single crystal (SC) nickel-based superalloy DD5 with minor grain boundary (GB) strengthening elements (C, B and Hf) were studied as a function of as-ca...The microstructual evolution and stability of a second generation single crystal (SC) nickel-based superalloy DD5 with minor grain boundary (GB) strengthening elements (C, B and Hf) were studied as a function of as-cast, heat treatment and thermal exposure. The microstructure and composition of the alloy were investigated by optical microscopy, scanning electron microanalysis (SEM), electron probe microanalysis (EPMA), energy dispersive spectrometry (EDS) and extraction analysis. In the as-cast condition,the microstructure observations and composition analysis showed that γ phase was the primary solidification phase and there were three microsegregations in the metal matrix. The morphology of these microsegregations depended on element segregations. After heat treatment, the dendrite cores contained fine and cuboidal-shaped γ′ particles with an average edge length of about 0.5 μm, whileinterdendritic regions contained irregularly-shaped γ′ particles and MC/M23C6 carbides. The mass fraction of γ′ phases was 61.685%.After exposure at 980 °C for 1000 h, no TCP phase was observed in both dendritic and interdendritic regions, indicating a good microstructual stability of the DD5 alloy at 980 °C.展开更多
The single crystal of nickel-base super alloy is widely used for making turbine blades.The microstructure of the alloy,especially the deviation of preferred orientation of single crystal,possesses the most important e...The single crystal of nickel-base super alloy is widely used for making turbine blades.The microstructure of the alloy,especially the deviation of preferred orientation of single crystal,possesses the most important effects on the mechanical properties of the blades.In this study,the single crystal ingot and blade of DZ417G alloy are prepared by means of the spiral crystal selector as well as the directional solidification method,and the effect of the parameters(i.e.,the shape of samples,the withdrawal rate)and the structure of the spiral crystal selector on the formation of single crystal and the crystal orientation are investigated.This method can prepare not only the single crystal ingot with simple shape but also the single crystal blades with the complex shape,the simple with rod-shape can form the single crystal easily with a relatively fast withdrawal rate,but the blade with complex shape requires much slower withdrawal rate to form single crystal.The length of the crystal selector almost has no effect on the crystal orientation.However,the angle of selector plays an obvious role on the orientation;the selector with a smaller angle can effectively reduce the deviation of preferred orientation;the appropriate angle of selector to obtain optimal orientation is found to be around30°and the deviation of preferred orientation is about30°for this selector.展开更多
Microstructural stability of a nickel base single crystal alloy DD8 has been investigated.Standard heat treated specimen showed good microstructural stability at 950℃.While under the as-cast condition,a kind of rod-l...Microstructural stability of a nickel base single crystal alloy DD8 has been investigated.Standard heat treated specimen showed good microstructural stability at 950℃.While under the as-cast condition,a kind of rod-like phase precipitated in the interdendritic region of as-cast specimen during thermal exposure.The phase,which has bcc structure,was enriched with Cr.Thermo-calc also predicted precipitation of a bcc phase at around 950℃.The Cr-rich bcc phase was considered asα-Cr and formed due to the segregation of Cr under the as-cast condition.展开更多
Existing experimental results have shown that four types of physical mechanisms, namely, martensite transformation, martensite reorientation, magnetic domain wall motion and magnetization vector rotation, can be activ...Existing experimental results have shown that four types of physical mechanisms, namely, martensite transformation, martensite reorientation, magnetic domain wall motion and magnetization vector rotation, can be activated during the magneto-mechanical deformation of NiMnGa ferromagnetic shape memory alloy (FSMA) single crystals. In this work, based on irreversible thermodynamics, a three-dimensional (3D) single crystal constitutive model is constructed by considering the aforementioned four mechanisms simultaneously. Three types of internal variables, i.e., the volume fraction of each martensite variant, the volume fraction of magnetic domain in each variant and the deviation angle between the magnetization vector, and easy axis are introduced to characterize the magneto-mechanical state of the single crystals. The thermodynamic driving force of each mechanism and the thermodynamic constraints on the constitutive model are obtained from Clausius's dissipative inequality and constructed Gibbs free energy. Then, thermodynamically consistent kinetic equations for the four mechanisms are proposed, respectively. Finally, the ability of the proposed model to describe the magneto-mechanical deformation of NiMnGa FSMA single crystals is verified by comparing the predictions with corresponding experimental results. It is shown that the proposed model can quantitatively capture the main experimental phenomena. Further, the proposed model is used to predict the deformations of the single crystals under the non-proportional mechanical loading conditions.展开更多
Transient Liquid Phase Diffusion bonding (TLP bonding) is an effective method to achieve excellent joint of DD6, which is a new generation single crystal superalloy to manufacture aero-engine turbine blades. In this p...Transient Liquid Phase Diffusion bonding (TLP bonding) is an effective method to achieve excellent joint of DD6, which is a new generation single crystal superalloy to manufacture aero-engine turbine blades. In this paper, the interlayer alloys for DD6 TLP bonding were designed. The alloy foils with thickness 40 μm ~ 60 μm, width 4 mm were prepared by using a single roller rapid solidification apparatus and the TLP bonding of DD6 was conducted. Then the joint microstructure and alloying elements diffusion behaviors were analyzed. The results indicate that microstructures of interlayer alloys prepared are fine and homogeneous, the melting point range of alloys from 1070°C to 1074°C and their melting temperature interval is merely 20°C, when the chemical composition of alloys are 1.5 ~ 2.0Cr, 3.2 ~ 4.0W, 3.7 ~ 4.5Co, 2.2 ~ 3.0Al, 0.7 ~ 1.0Mo, 3.2B, remain Ni (wt%). When the welding parameters are bonding temperature 1200?C, holding time 8.0 hour and welding pressure 0.3 MPa, the compacted joints obtained and the microstructure of TLP bonding seams were similar to base metal. The bonding joint is composed of weld center zone, isothermal solidification zone and diffusion-affected zone. Within joint, the elements diffusion is sufficient and borides in the diffusion zone are fewer.展开更多
The stress aging behavior of Al-Cu alloy under various applied stresses, i.e., elastic stress, yield stress and plasticdeformation stress, was investigated using single crystals. The resulting microstructures and the ...The stress aging behavior of Al-Cu alloy under various applied stresses, i.e., elastic stress, yield stress and plasticdeformation stress, was investigated using single crystals. The resulting microstructures and the yield strength were examined bytransmission electron microscopy (TEM) and compression tests, respectively. The results indicate that an elastic stress of 15 MPa ishigh enough to influence the precipitation distribution of θ′ during aging at 180℃. The applied stress loading along [116]Aldirection results in increased number density of θ′ on (001)Al habit planes. This result becomes more significant with increasingapplied stress and leads to lower yield strength of Al-Cu single crystals during aging. Moreover, the generation of the preferentialorientation of θ′ was discussed by the effect of the dislocation induced by applied stress as well as the role of the misfit between theθ′-precipitate and Al matrix. The results are in agreement with the effect of the latter one.展开更多
The effect of the crystal orientations and precipitates on the corrosion behavior of Al-Cu-Li single crystals was studied by scanning electron microscopy, transmission electron microscopy, optical microscopy, immersio...The effect of the crystal orientations and precipitates on the corrosion behavior of Al-Cu-Li single crystals was studied by scanning electron microscopy, transmission electron microscopy, optical microscopy, immersion testing in exfoliation corrosion solution, and electrochemical testing. The results show that the corrosion rates of different orientations of the aged Al-Cu-Li alloy increase in the order of (001) 1 phase deteriorated the corrosion resistance of the Al-Cu-Li alloy, and the degree of deterioration differed in different crystal plane orientations. The severe localized corrosion of the aged alloy propagates along the crystallography and extends along the {111}Alplane in the form of corrosion bands.展开更多
The preparation procedure of DD5 single crystal castings was optimized. The microstructure characteristics of DD5 single crystal superalloy were investigated by microstructure observation and segregation behavior exam...The preparation procedure of DD5 single crystal castings was optimized. The microstructure characteristics of DD5 single crystal superalloy were investigated by microstructure observation and segregation behavior examination. The results show that the grain orientation is optimized by constraining the spiral crystallizer in [001] orientation and spatial scale. Also, the γ' phase of inter-dendrites is larger and more irregular than that in dendrite arms. High temperature tensile tests of DD5 single crystal castings exhibit that the peak stress increases with increasing temperature, while the area reduction shows an opposite trend, when the temperature is below 800℃; meanwhile, when the temperature is between 800℃ and 1000℃, the fracture stress of the alloy is the same as the peak stress. The fracture mode changes from shear to ductile with increasing temperature from 600℃ and 1000℃.展开更多
This study presents a design strategy to enhance the high-temperature creep resistance of Ni-based superalloys.This strategy focuses on two principles:(1)minimizing the dimensions ofγ/γ′interfaces andγchannels by ...This study presents a design strategy to enhance the high-temperature creep resistance of Ni-based superalloys.This strategy focuses on two principles:(1)minimizing the dimensions ofγ/γ′interfaces andγchannels by reducing the size of theγ′phase;(2)key alloy composition control to strengthen the heterostructureγ/γ′interfaces.This strategy proved very effective by the designed three superalloys'prolonged creep lives.An alloy exhibits ultra-long creep life by 388 h at 1100°C/137 MPa,which runs at the highest level among those alloys without Ru addition.With Ru addition,an alloy that lasted for 748 h with a creep strain of~6%at 1110°C/137 MPa is developed.This study provides a new route of high-temperature creep lives through heterostructure interfacial design with size effects and key alloying elements.展开更多
To investigate the deformation twinning and the plastic anisotropy of the hexagonal-close-packed(HCP) single crystal, the crystal plastic constitutive model including slip and twinning deformation was established wi...To investigate the deformation twinning and the plastic anisotropy of the hexagonal-close-packed(HCP) single crystal, the crystal plastic constitutive model including slip and twinning deformation was established with finite element method based on crystal plasticity theory. The model was verified by test data. Newton-Raphson iteration method was developed with the stress components directly as the basic variables of iteration. The plastic deformation behavior of single crystal AZ31 alloy was analyzed numerically under monotonic tension and compression, respectively, in four different strain paths(i.e. along 〈2110〉, 〈 0110〉, 〈0001〉 and 〈0111〉) with this model. The stress-strain curves were obtained in the above paths. The numerical calculation results show that this crystal model is feasible to predict the activity of slip/twinning system and to describe the number of active twin variants, the types of dominant twin variants and twin intersection. Due to the polar nature of mechanical twinning in inelastic deformation of the material, the plastic behavior of the single crystal material is demonstrated to be notably anisotropic and high asymmetry.展开更多
The excellent dislocation storage ability of bulk multi-principal element alloys(MPEAs)has been widely reported.To date,however,the underlying mechanisms of dislocation escape behavior in small-size facecentered cubic...The excellent dislocation storage ability of bulk multi-principal element alloys(MPEAs)has been widely reported.To date,however,the underlying mechanisms of dislocation escape behavior in small-size facecentered cubic(FCC)MPEAs have rarely been studied.Here,we quantitatively control the initial dislocation densities(-10^(15) m^(-2) and -10^(16) m^(-2))by large-scale molecular dynamics(MD)simulations and perform uniaxial compression simulations to compare the dislocation starvation behavior of CrCoNi with pure Cu single crystal pillars(SCPs).The analysis reveals that the CrCoNi SCPs with low initial dislocation density(-10^(15) m^(-2))can continuously accommodate mobile dislocations,and the critical dimension for dislocation starvation is about 30 nm.In particular,the CrCoNi SCPs with chemical short-range ordering(SRO)exhibit better dislocation storage and multiplication abilities than the random solid solution(RSS)samples even when the initial dislocation density is low.However,the presence of a large number of pre-existing dislocation locks governs the strong dislocation multiplication ability of the small-size RSS CrCoNi SCPs,in obvious contrast to the deformation of all pure Cu SCPs which is completely dominated by intermittent mobile dislocation starvation.Most importantly,we reveal the fundamental physics for the good dislocation storage of CrCoNi SCPs at small sizes from the perspective of chemical heterogeneity.The new phenomena reported in this work provide a unique atomic-scale perspective for understanding the microscopic physical origin of the mechanical behavior of MPEAs and the discovery of extremely slow dislocation escape behavior in small-scaled pillars,providing a reliable basis for the development of the dislocation starvation model.展开更多
基金financially supported by the CityU internal supports under “The Structural Material Development Funding” program (No. CityU 7004894)National Natural Science Foundation of China (Nos. 51901086 and 51731006)Natural Science Foundation of Jiangsu Province, China (Nos. BK20190977 and BK 20180984)。
文摘To clarify the correlation of single-crystalline structure with corrosion performance in high-strength TiAl alloys, electrochemical and surface characterization was performed by comparing Ti–45Al–8Nb dual-phase single crystals with their polycrystalline counterparts in NaCl solution. Polarization curves show a lower corrosion rate and a higher pitting potential of ~280 mV for the dual-phase single crystals. Electrochemical impedance spectroscopy and potentiostatic polarization plots revealed a higher impedance of the charge transfer through the compact passive film. Surface composition analysis indicated a compact film with more content of Nb, as twice as that in the film on the polycrystals.Our results reflect that the dual-phase Ti–45Al–8Nb single crystals possess a higher corrosion resistance in NaCl solution, compared with their polycrystalline counterpart, arising from a more homogeneous microstructure and composition distribution.
文摘The isothermal oxidation behavior of the second generation single crystal superalloy DD6 was studied at 1050 ℃ and 1100 ℃ in ambient atmosphere.Morphology of oxides was examined by SEM and their composition was analyzed by XRD and EDS.The experimental results show that DD6 alloy obeys subparabolic rate law during oxidation of 100 h at 1050 ℃ and 1100 ℃.The oxide scale exposed at 1050 ℃ is made up of an outer NiO layer with a small amount of Al2O3 and an inner Al2O3 layer.The oxide scale exposed at 1100 ℃ is made up of an outer Al2O3 layer with a small amount of NiO,an intermediate layer,mainly composed of Cr2O3 and TaO2,and an inner Al2O3 layer.The γ'-free layer was formed under the oxide scale at two temperatures.
文摘Two experimental single crystal superalloys, the Ru-free alloy and the Ru-containing alloy with [001 ] orientation, were cast in a directionally solidified furnace, while other alloying element contents were kept unchanged. The effects of Ru on the microstructure and phase stability of the single crystal superalloy were investigated, y' directional coarsening and rafting were observed in the Ru-free alloy and Ru-containing alloy after long-term aging at 1070~C for 800 h. Needle-shaped o topologically close packed (TCP) phases precipitated and grew along the fixed direction in both the alloys. The precipitating rate and volume fraction of TCP phases decreased significantly by adding Ru. The compositions ofy and y' phases measured using an energy-dispersive X-ray spectroscope (EDS) in transmission electron microscopy (TEM) analysis showed that the addition of Ru lessened the partition ratio of TCP forming elements, Re, W and Mo, and decreased the satu- ration degrees of these elements in y phase, which can enable the Ru-containing alloy to be more resistant to the formation of TCP phases. It is indicated that the addition of Ru to the Ni-based single crystal superalloy with high content of the refractory alloying element can enhance phase stability.
文摘The microstructual evolution and stability of a second generation single crystal (SC) nickel-based superalloy DD5 with minor grain boundary (GB) strengthening elements (C, B and Hf) were studied as a function of as-cast, heat treatment and thermal exposure. The microstructure and composition of the alloy were investigated by optical microscopy, scanning electron microanalysis (SEM), electron probe microanalysis (EPMA), energy dispersive spectrometry (EDS) and extraction analysis. In the as-cast condition,the microstructure observations and composition analysis showed that γ phase was the primary solidification phase and there were three microsegregations in the metal matrix. The morphology of these microsegregations depended on element segregations. After heat treatment, the dendrite cores contained fine and cuboidal-shaped γ′ particles with an average edge length of about 0.5 μm, whileinterdendritic regions contained irregularly-shaped γ′ particles and MC/M23C6 carbides. The mass fraction of γ′ phases was 61.685%.After exposure at 980 °C for 1000 h, no TCP phase was observed in both dendritic and interdendritic regions, indicating a good microstructual stability of the DD5 alloy at 980 °C.
基金Project(51074105)supported by the National Natural Science Foundation of ChinaProjects(08DZ1130100,10520706400)supported by the Science and Technology Commission of Shanghai Municipality,ChinaProject(2007CB613606)supported by the National Basic Research Program of China
文摘The single crystal of nickel-base super alloy is widely used for making turbine blades.The microstructure of the alloy,especially the deviation of preferred orientation of single crystal,possesses the most important effects on the mechanical properties of the blades.In this study,the single crystal ingot and blade of DZ417G alloy are prepared by means of the spiral crystal selector as well as the directional solidification method,and the effect of the parameters(i.e.,the shape of samples,the withdrawal rate)and the structure of the spiral crystal selector on the formation of single crystal and the crystal orientation are investigated.This method can prepare not only the single crystal ingot with simple shape but also the single crystal blades with the complex shape,the simple with rod-shape can form the single crystal easily with a relatively fast withdrawal rate,but the blade with complex shape requires much slower withdrawal rate to form single crystal.The length of the crystal selector almost has no effect on the crystal orientation.However,the angle of selector plays an obvious role on the orientation;the selector with a smaller angle can effectively reduce the deviation of preferred orientation;the appropriate angle of selector to obtain optimal orientation is found to be around30°and the deviation of preferred orientation is about30°for this selector.
文摘Microstructural stability of a nickel base single crystal alloy DD8 has been investigated.Standard heat treated specimen showed good microstructural stability at 950℃.While under the as-cast condition,a kind of rod-like phase precipitated in the interdendritic region of as-cast specimen during thermal exposure.The phase,which has bcc structure,was enriched with Cr.Thermo-calc also predicted precipitation of a bcc phase at around 950℃.The Cr-rich bcc phase was considered asα-Cr and formed due to the segregation of Cr under the as-cast condition.
基金the National Natural Science Foundation of China (Grant 11602203)Young Elite Scientist Sponsorship Program by the China Association for Science and Technology (Grant 2016QNRC001)Fundamental Research Funds for the Central Universities (Grant 2682018CX43).
文摘Existing experimental results have shown that four types of physical mechanisms, namely, martensite transformation, martensite reorientation, magnetic domain wall motion and magnetization vector rotation, can be activated during the magneto-mechanical deformation of NiMnGa ferromagnetic shape memory alloy (FSMA) single crystals. In this work, based on irreversible thermodynamics, a three-dimensional (3D) single crystal constitutive model is constructed by considering the aforementioned four mechanisms simultaneously. Three types of internal variables, i.e., the volume fraction of each martensite variant, the volume fraction of magnetic domain in each variant and the deviation angle between the magnetization vector, and easy axis are introduced to characterize the magneto-mechanical state of the single crystals. The thermodynamic driving force of each mechanism and the thermodynamic constraints on the constitutive model are obtained from Clausius's dissipative inequality and constructed Gibbs free energy. Then, thermodynamically consistent kinetic equations for the four mechanisms are proposed, respectively. Finally, the ability of the proposed model to describe the magneto-mechanical deformation of NiMnGa FSMA single crystals is verified by comparing the predictions with corresponding experimental results. It is shown that the proposed model can quantitatively capture the main experimental phenomena. Further, the proposed model is used to predict the deformations of the single crystals under the non-proportional mechanical loading conditions.
文摘Transient Liquid Phase Diffusion bonding (TLP bonding) is an effective method to achieve excellent joint of DD6, which is a new generation single crystal superalloy to manufacture aero-engine turbine blades. In this paper, the interlayer alloys for DD6 TLP bonding were designed. The alloy foils with thickness 40 μm ~ 60 μm, width 4 mm were prepared by using a single roller rapid solidification apparatus and the TLP bonding of DD6 was conducted. Then the joint microstructure and alloying elements diffusion behaviors were analyzed. The results indicate that microstructures of interlayer alloys prepared are fine and homogeneous, the melting point range of alloys from 1070°C to 1074°C and their melting temperature interval is merely 20°C, when the chemical composition of alloys are 1.5 ~ 2.0Cr, 3.2 ~ 4.0W, 3.7 ~ 4.5Co, 2.2 ~ 3.0Al, 0.7 ~ 1.0Mo, 3.2B, remain Ni (wt%). When the welding parameters are bonding temperature 1200?C, holding time 8.0 hour and welding pressure 0.3 MPa, the compacted joints obtained and the microstructure of TLP bonding seams were similar to base metal. The bonding joint is composed of weld center zone, isothermal solidification zone and diffusion-affected zone. Within joint, the elements diffusion is sufficient and borides in the diffusion zone are fewer.
基金Project(51375503)supported by the National Natural Science Foundation of China
文摘The stress aging behavior of Al-Cu alloy under various applied stresses, i.e., elastic stress, yield stress and plasticdeformation stress, was investigated using single crystals. The resulting microstructures and the yield strength were examined bytransmission electron microscopy (TEM) and compression tests, respectively. The results indicate that an elastic stress of 15 MPa ishigh enough to influence the precipitation distribution of θ′ during aging at 180℃. The applied stress loading along [116]Aldirection results in increased number density of θ′ on (001)Al habit planes. This result becomes more significant with increasingapplied stress and leads to lower yield strength of Al-Cu single crystals during aging. Moreover, the generation of the preferentialorientation of θ′ was discussed by the effect of the dislocation induced by applied stress as well as the role of the misfit between theθ′-precipitate and Al matrix. The results are in agreement with the effect of the latter one.
基金the financial support from the National Natural Science Foundation of China (No. 51961013)the Natural Science Foundation of Jiangxi Province, China (No. 20202ACBL214002)+2 种基金the China Postdoctoral Science Foundation (Nos. 2019M660159 and 2020T130093)the Postdoctoral Science Foundation of Jiangxi Province, China (No. 2019KY25)the Program of Qingjiang Excellent Young Talents of Jiangxi University of Science and Technology, China (No. JXUSTQJYX2020022)。
文摘The effect of the crystal orientations and precipitates on the corrosion behavior of Al-Cu-Li single crystals was studied by scanning electron microscopy, transmission electron microscopy, optical microscopy, immersion testing in exfoliation corrosion solution, and electrochemical testing. The results show that the corrosion rates of different orientations of the aged Al-Cu-Li alloy increase in the order of (001) 1 phase deteriorated the corrosion resistance of the Al-Cu-Li alloy, and the degree of deterioration differed in different crystal plane orientations. The severe localized corrosion of the aged alloy propagates along the crystallography and extends along the {111}Alplane in the form of corrosion bands.
基金financially supported by Jiangsu Industrial Support Project (Nos. BE2014007-2, BE2014007-3, and BE2014007-4)the financial support from Jiangsu Development and Reform Commission (No. [2013]2027)Jiangsu Postgraduates Innovating Scientific Research Project (No. KYLX15-1061)
文摘The preparation procedure of DD5 single crystal castings was optimized. The microstructure characteristics of DD5 single crystal superalloy were investigated by microstructure observation and segregation behavior examination. The results show that the grain orientation is optimized by constraining the spiral crystallizer in [001] orientation and spatial scale. Also, the γ' phase of inter-dendrites is larger and more irregular than that in dendrite arms. High temperature tensile tests of DD5 single crystal castings exhibit that the peak stress increases with increasing temperature, while the area reduction shows an opposite trend, when the temperature is below 800℃; meanwhile, when the temperature is between 800℃ and 1000℃, the fracture stress of the alloy is the same as the peak stress. The fracture mode changes from shear to ductile with increasing temperature from 600℃ and 1000℃.
基金supported by the National Key Research and Development Program of China(2021YFA1200201)the Natural Science Foundation of China(91860202,51988101,52171001,52071003 and 52001297)+3 种基金the R&D Program of Beijing Municipal Education Commission(KM202210005003)the Beijing Outstanding Young Scientists Projects(BJJWZYJH01201910005018)the Beijing Nova Program(Z211100002121170)the Overseas Expertise Introduction Project for Discipline Innovation(“111”project)(DB18015)
文摘This study presents a design strategy to enhance the high-temperature creep resistance of Ni-based superalloys.This strategy focuses on two principles:(1)minimizing the dimensions ofγ/γ′interfaces andγchannels by reducing the size of theγ′phase;(2)key alloy composition control to strengthen the heterostructureγ/γ′interfaces.This strategy proved very effective by the designed three superalloys'prolonged creep lives.An alloy exhibits ultra-long creep life by 388 h at 1100°C/137 MPa,which runs at the highest level among those alloys without Ru addition.With Ru addition,an alloy that lasted for 748 h with a creep strain of~6%at 1110°C/137 MPa is developed.This study provides a new route of high-temperature creep lives through heterostructure interfacial design with size effects and key alloying elements.
基金Projects(11272094,11072064)supported by the National Natural Science Foundation of ChinaProject(LGZX201101)supported by the Laboratory Center of Guangxi Science and Technology,ChinaProject(1074023)supported by the Science Foundation of Guangxi University of Science&Technology,China
文摘To investigate the deformation twinning and the plastic anisotropy of the hexagonal-close-packed(HCP) single crystal, the crystal plastic constitutive model including slip and twinning deformation was established with finite element method based on crystal plasticity theory. The model was verified by test data. Newton-Raphson iteration method was developed with the stress components directly as the basic variables of iteration. The plastic deformation behavior of single crystal AZ31 alloy was analyzed numerically under monotonic tension and compression, respectively, in four different strain paths(i.e. along 〈2110〉, 〈 0110〉, 〈0001〉 and 〈0111〉) with this model. The stress-strain curves were obtained in the above paths. The numerical calculation results show that this crystal model is feasible to predict the activity of slip/twinning system and to describe the number of active twin variants, the types of dominant twin variants and twin intersection. Due to the polar nature of mechanical twinning in inelastic deformation of the material, the plastic behavior of the single crystal material is demonstrated to be notably anisotropic and high asymmetry.
基金financially supported by the Key University Science Research Project of Jiangsu Province(No.17KJA130002)the Natural Science Foundation of Jiangsu Province(No.BK20201031)+1 种基金the National Key R&D Program of China(Grant No.2021YFA1200203)the National Natural Science Foundation of China(Grant Nos.51971112 and 52071181).
文摘The excellent dislocation storage ability of bulk multi-principal element alloys(MPEAs)has been widely reported.To date,however,the underlying mechanisms of dislocation escape behavior in small-size facecentered cubic(FCC)MPEAs have rarely been studied.Here,we quantitatively control the initial dislocation densities(-10^(15) m^(-2) and -10^(16) m^(-2))by large-scale molecular dynamics(MD)simulations and perform uniaxial compression simulations to compare the dislocation starvation behavior of CrCoNi with pure Cu single crystal pillars(SCPs).The analysis reveals that the CrCoNi SCPs with low initial dislocation density(-10^(15) m^(-2))can continuously accommodate mobile dislocations,and the critical dimension for dislocation starvation is about 30 nm.In particular,the CrCoNi SCPs with chemical short-range ordering(SRO)exhibit better dislocation storage and multiplication abilities than the random solid solution(RSS)samples even when the initial dislocation density is low.However,the presence of a large number of pre-existing dislocation locks governs the strong dislocation multiplication ability of the small-size RSS CrCoNi SCPs,in obvious contrast to the deformation of all pure Cu SCPs which is completely dominated by intermittent mobile dislocation starvation.Most importantly,we reveal the fundamental physics for the good dislocation storage of CrCoNi SCPs at small sizes from the perspective of chemical heterogeneity.The new phenomena reported in this work provide a unique atomic-scale perspective for understanding the microscopic physical origin of the mechanical behavior of MPEAs and the discovery of extremely slow dislocation escape behavior in small-scaled pillars,providing a reliable basis for the development of the dislocation starvation model.