期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
On Submanifolds of the Unit Sphere with Vanishing Mobius Form and Parallel Para-Blaschke Tensor
1
作者 Hong Ru SONG Xi Min LIU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2022年第2期347-370,共24页
The para-Blaschke tensor are extended in this paper from hypersurfaces to general higher codimensional submanifolds in the unit sphere S^(n),which is invariant under the Mobius transformations on Sn.Then some typical ... The para-Blaschke tensor are extended in this paper from hypersurfaces to general higher codimensional submanifolds in the unit sphere S^(n),which is invariant under the Mobius transformations on Sn.Then some typical new examples of umbilic-free submanifolds in Snwith vanishing Mobius form and a parallel para-Blaschke tensor of two distinct eigenvalues,D_(1) and D_(2),are constructed.The main theorem of this paper is a simple characterization of these newly found examples in terms of the eigenvalues D_(1) and D_(2). 展开更多
关键词 Parallel Blaschke tensor vanishing mobius form constant scalar curvature parallel mean curvature vector field
原文传递
SUBMANIFOLDS IN S^(n+p) WITH PARALLEL MBIUS FORM
2
作者 XiaQiaoling 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2004年第4期405-416,共12页
In this paper,the rigidity theorems of the submanifolds in S n+p with parallel Mobius form and constant Mobius scalar curvature are given.
关键词 mobius submanifold mobius form Blaschke form scalar curvature.
下载PDF
The Hypersurfaces in a Unit Sphere with Nonnegative Mobius Sectional Curvature
3
作者 钟定兴 孙弘安 《Northeastern Mathematical Journal》 CSCD 2007年第1期15-23,共9页
Let x : M→S^n+1 be a hypersurface in the (n + 1)-dimensional unit sphere S^n+1 without umbilic point. The Mobius invariants of x under the Mobius transformation group of S^n+1 are Mobius metric, Mobius form, M... Let x : M→S^n+1 be a hypersurface in the (n + 1)-dimensional unit sphere S^n+1 without umbilic point. The Mobius invariants of x under the Mobius transformation group of S^n+1 are Mobius metric, Mobius form, Mobius second fundamental form and Blaschke tensor. In this paper, we prove the following theorem: Let x : M→S^n+1 (n≥2) be an umbilic free hypersurface in S^n+1 with nonnegative Mobius sectional curvature and with vanishing Mobius form. Then x is locally Mobius equivalent to one of the following hypersurfaces: (i) the torus S^k(a) × S^n-k(√1- a^2) with 1 ≤ k ≤ n - 1; (ii) the pre-image of the stereographic projection of the standard cylinder S^k × R^n-k belong to R^n+1 with 1 ≤ k ≤ n- 1; (iii) the pre-image of the stereographic projection of the Cone in R^n+1 : -↑x(u, v, t) = (tu, tv), where (u,v, t)∈S^k(a) × S^n-k-1( √1-a^2)× R^+. 展开更多
关键词 mobius sectional curvature mobius form mobius second fundamental form Blaschke tensor
下载PDF
Spacelike Mobius Hypersurfaces in Four Dimensional Lorentzian Space Form 被引量:5
4
作者 Yan Bin LIN Ying Lü Chang Ping WANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2019年第4期519-536,共18页
In this paper, we first set up an alternative fundamental theory of M?bius geometry for any umbilic-free spacelike hypersurfaces in four dimensional Lorentzian space form, and prove the hypersurfaces can be determined... In this paper, we first set up an alternative fundamental theory of M?bius geometry for any umbilic-free spacelike hypersurfaces in four dimensional Lorentzian space form, and prove the hypersurfaces can be determined completely by a system consisting of a function W and a tangent frame {E_i}. Then we give a complete classification for spacelike M?bius homogeneous hypersurfaces in four dimensional Lorentzian space form. They are either M?bius equivalent to spacelike Dupin hypersurfaces or to some cylinders constructed from logarithmic curves and hyperbolic logarithmic spirals. Some of them have parallel para-Blaschke tensors with non-vanishing M?bius form. 展开更多
关键词 mobius form mobius metric para-Blaschke tensor mobius homogeneous hypersurface hyperbolic logarithmic spiral Dupin hypersurface
原文传递
SPACE-LIKE BLASCHKE ISOPARAMETRIC SUBMANIFOLDS IN THE LIGHT-CONE OF CONSTANT SCALAR CURVATURE
5
作者 Hongru SONG Ximin LIU 《Acta Mathematica Scientia》 SCIE CSCD 2022年第4期1547-1568,共22页
Let E_(s)^(m+p+1) ?R_(s+1)^(m+p+2)(m≥ 2,p≥ 1,0≤s≤p) be the standard(punched)light-cone in the Lorentzian space R_(s+1)^(m+p+2),and let Y:M^(m)→E_(s)^(m+p+1) be a space-like immersed submanifold of dimension m.The... Let E_(s)^(m+p+1) ?R_(s+1)^(m+p+2)(m≥ 2,p≥ 1,0≤s≤p) be the standard(punched)light-cone in the Lorentzian space R_(s+1)^(m+p+2),and let Y:M^(m)→E_(s)^(m+p+1) be a space-like immersed submanifold of dimension m.Then,in addition to the induced metric g on Mm,there are three other important invariants of Y:the Blaschke tensor A,the conic second fundamental form B,and the conic Mobius form C;these are naturally defined by Y and are all invariant under the group of rigid motions on E_(s)^(m+p+1).In particular,g,A,B,C form a complete invariant system for Y,as was originally shown by C.P.Wang for the case in which s=0.The submanifold Y is said to be Blaschke isoparametric if its conic Mobius form C vanishes identically and all of its Blaschke eigenvalues are constant.In this paper,we study the space-like Blaschke isoparametric submanifolds of a general codimension in the light-cone E_(s)^(m+p+1) for the extremal case in which s=p.We obtain a complete classification theorem for all the m-dimensional space-like Blaschke isoparametric submanifolds in Epm+p+1of constant scalar curvature,and of two distinct Blaschke eigenvalues. 展开更多
关键词 Conic mobius form parallel Blaschke tensor induced metric conic second fundamental form stationary submanifolds constant scalar curvature
下载PDF
A complete classification of Blaschke parallel submanifolds with vanishing Mbius form 被引量:3
6
作者 LI XingXiao SONG HongRu 《Science China Mathematics》 SCIE CSCD 2017年第7期1281-1310,共30页
The Blaschke tensor and the Mbius form are two of the fundamental invariants in the Mobius geometry of submanifolds;an umbilic-free immersed submanifold in real space forms is called Blaschke parallel if its Blaschke ... The Blaschke tensor and the Mbius form are two of the fundamental invariants in the Mobius geometry of submanifolds;an umbilic-free immersed submanifold in real space forms is called Blaschke parallel if its Blaschke tensor is parallel.We prove a theorem which,together with the known classification result for Mobius isotropic submanifolds,successfully establishes a complete classification of the Blaschke parallel submanifolds in S^n with vanishing Mobius form.Before doing so,a broad class of new examples of general codimensions is explicitly constructed. 展开更多
关键词 parallel Blaschke tensor vanishing mobius form constant scalar curvature parallel mean curvature vector
原文传递
On Mbius Form and Mbius Isoparametric Hypersurfaces 被引量:1
7
作者 Ze Jun HU Xiao Li TIAN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第12期2077-2092,共16页
An umbilic-free hypersurface in the unit sphere is called MSbius isoparametric if it satisfies two conditions, namely, it has vanishing MSbius form and has constant MSbius principal curvatures. In this paper, under th... An umbilic-free hypersurface in the unit sphere is called MSbius isoparametric if it satisfies two conditions, namely, it has vanishing MSbius form and has constant MSbius principal curvatures. In this paper, under the condition of having constant MSbius principal curvatures, we show that the hypersurface is of vanishing MSbius form if and only if its MSbius form is parallel with respect to the Levi-Civita connection of its MSbius metric. Moreover, typical examples are constructed to show that the condition of having constant MSbius principal curvatures and that of having vanishing MSbius form are independent of each other. 展开更多
关键词 mobius isoparametric hypersurface mobius second fundamental form mobius metric MSbius form paxallel mobius form
原文传递
On the Blaschke Isoparametric Hypersurfaces in the Unit Sphere 被引量:12
8
作者 Xing Xiao LI Feng Yun ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第4期657-678,共22页
Given an immersed submanifold x : M^M → S^n in the unit sphere S^n without umbilics, a Blaschke eigenvalue of x is by definition an eigenvalue of the Blaschke tensor of x. x is called Blaschke isoparametric if its M... Given an immersed submanifold x : M^M → S^n in the unit sphere S^n without umbilics, a Blaschke eigenvalue of x is by definition an eigenvalue of the Blaschke tensor of x. x is called Blaschke isoparametric if its Mobius form vanishes identically and all of its Blaschke eigenvalues are constant. Then the classification of Blaschke isoparametric hypersurfaces is natural and interesting in the MSbius geometry of submanifolds. When n = 4, the corresponding classification theorem was given by the authors. In this paper, we are able to complete the corresponding classification for n = 5. In particular, we shall prove that all the Blaschke isoparametric hypersurfaces in S^5 with more than two distinct Blaschke eigenvalues are necessarily Mobius isoparametric. 展开更多
关键词 mobius form Blaschke eigenvalues Blaschke tensor mobius metric mobius second fundamental form
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部