G-band mode is one of the most important Raman modes of single-walled carbon nanotubes (SWCNTs). The vibrational frequency of the mode can be used to characterize SWC- NTs. However, analytical expression that can li...G-band mode is one of the most important Raman modes of single-walled carbon nanotubes (SWCNTs). The vibrational frequency of the mode can be used to characterize SWC- NTs. However, analytical expression that can link the frequency to the geometrical parameters of a SWCNT is to date not reported. Based on a molecular mechanics model, the analytical solution is obtained for G-band mode frequency of SWCNTs. The result calculated from the present solutions is in good agreement with the existing experimental and numerical data.展开更多
基金supported by the National Natural Science Foundation of China (Nos10872120 and 10732040)Shanghai Shuguang Program (08SG39)+2 种基金Shanghai Rising Star Program (No09QH1401000)Innovation Program of Shanghai Municipal Education Commission (09ZZ97)Shanghai Leading Academic Discipline Project (S30106)
文摘G-band mode is one of the most important Raman modes of single-walled carbon nanotubes (SWCNTs). The vibrational frequency of the mode can be used to characterize SWC- NTs. However, analytical expression that can link the frequency to the geometrical parameters of a SWCNT is to date not reported. Based on a molecular mechanics model, the analytical solution is obtained for G-band mode frequency of SWCNTs. The result calculated from the present solutions is in good agreement with the existing experimental and numerical data.