Based on analyzing the structure and working principle on electric vehicles (EVs) with dual motors coupled by planetarY gears, the control strategy of mode switching was proposed. The power interruption problem on E...Based on analyzing the structure and working principle on electric vehicles (EVs) with dual motors coupled by planetarY gears, the control strategy of mode switching was proposed. The power interruption problem on EVs with automatic mechanical transmission (AMT) shifting was resolved. Based on the speed-torque characteristics of the planetary gears and the principle of the auxiliary motor' s zero speed braking, control features of mode switching were introduced. The mode shifting between the main motor mode and dual motors coupled driving were studied. Matlab/Simulink was adopted as a platform to develop the simulation model of EVs with dual motors drive system and 3 gears AMT. Simulation results demonstrated that the power interruption of dual motors drive system was solved during mode switching. The power requirements of EVs were satisfied, too.展开更多
The mode switching between spatial multiplexing (SM) and space-time block code (STBC) diversity is investigated for the multiple-input multiple-output (MIMO) automatic repeat request (ARQ) system. Five importa...The mode switching between spatial multiplexing (SM) and space-time block code (STBC) diversity is investigated for the multiple-input multiple-output (MIMO) automatic repeat request (ARQ) system. Five important practical factors are considered in the proposed switching scheme: transmit correlation, ARQ technique, packet loss probability (PLP) constraint, discrete rate transmission (DRT) and channel coding. Under the spatially correlated channel, the distributions of the post signal-to-interference-plus- noise ratio (SiNR) for the SM mode and the STBC mode are obtained by using Gamma approximations. Then this paper derives the closed-form expressions of the PLP and the throughput for different modes when the ARQ technique is employed, based on which the mode switching algorithm is proposed to improve the spectral efficency. In the simulation, the correction of the expressions is first verified. Then, the significant gain observed by the proposed algorithm is presented. Since the switching point is the key parameter to implement the mode switching, this paper also shows how the switching point is affected by the practical factors considered.展开更多
Industrial parks(IPs)play a crucial role in facilitating economic efficiency and comprehensive energy utilization in the industrial age.At the same time,multi-energy coupling and management of various types of energy ...Industrial parks(IPs)play a crucial role in facilitating economic efficiency and comprehensive energy utilization in the industrial age.At the same time,multi-energy coupling and management of various types of energy in IP have become serious challenges.In this paper,combined heat and power unit(CHP)model considering operation mode switching characteristics is formulated by exploring its internal composition to improve output flexibility of the energy supply side.Then,heat and electricity integrated energy system(HE-IES)optimal dispatch and pricing model are established,taking electricity and heat demand response strategy and steam thermal inertia property into account.Based on the above models,a mixed-integer bilinear programming framework is designed to coordinate the day-ahead operation and pricing strategy of the HE-IES in the IP.The scenario study is carried out on a practical industrial park in Southern China.Numerical results indicate the proposed mechanism can effectively improve IP’s energy utilization and economic efficiency.展开更多
Electric-hydraulic hybrid power steering(E-HHPS)system,a novel device with multiple modes for commercial electric vehicles,is designed to realize both superior steering feel and high energy efficiency.However,inconsis...Electric-hydraulic hybrid power steering(E-HHPS)system,a novel device with multiple modes for commercial electric vehicles,is designed to realize both superior steering feel and high energy efficiency.However,inconsistent steering perfor-mance occurs in the mode-switching process due to different dynamic characteristics of electric and hydraulic components,which even threatens driving safety.In this paper,mode-switching strategy and dynamic compensation control method are proposed for the E-HHPS system to eliminate the inconsistency of steering feel,which comprehensively considers ideal assistance characteristics and energy consumption of the system.Then,the influence of disturbances on system stability is analyzed,and H_(∞)robust controller is employed to guarantee system robustness and stability.The experimental results dem-onstrate that the proposed strategy can provide a steering system with natural steering feel without apparent inconsistency and effectively minimize energy consumption.展开更多
The power split hybrid electric vehicle(HEV)adopts a power coupling configuration featuring dual planetary gearsets and multiple clutches,enabling diverse operational modes through clutch engagement and disengagement....The power split hybrid electric vehicle(HEV)adopts a power coupling configuration featuring dual planetary gearsets and multiple clutches,enabling diverse operational modes through clutch engagement and disengagement.The multi-clutch configuration usually involves the collaboration of two clutches during the transient mode switching process,thereby substantially elevating control complexity.This study focuses on power split HEVs that integrate multi-clutch mechanisms and investigates how different clutch collaboration manners impact the characteristics of transient mode switching.The powertrain model for the power-split HEV is established utilizing matrix-based methodologies.Through the formulation of clutch torque curves and clutch collaboration models,this research systematically explores the effects of clutch engagement timing and the duration of clutch slipping state on transient mode switching behaviors.Building upon this analysis,an optimization problem for control parameters pertaining to the two collaborative clutches is formulated.The simulated annealing algorithm is employed to optimize these control parameters.Simulation results demonstrate that the clutch collaboration manners have a great influence on the transient mode switching performance.Compared with the pre-calibrated benchmark and the optimal solution derived by the genetic algorithm,the maximal longitudinal jerk and clutch slipping work during the transient mode switching process is reduced obviously with the optimal control parameters derived by the simulated annealing algorithm.The study provides valuable insights for the dynamic coordinated control of the power-split HEVs featuring complex clutch collaboration mechanisms.展开更多
The high-gap plant protection machine is taken in this paper as the research object to ensure the good driving power and safety of the high-gap plant protection machine,and the control strategy of inter-shaft torque d...The high-gap plant protection machine is taken in this paper as the research object to ensure the good driving power and safety of the high-gap plant protection machine,and the control strategy of inter-shaft torque distribution is established under different working conditions to improve vehicle power and lateral stability.The anticipated demand torque is initially determined based on the structural characteristics and operational principles of the plant protection machine.Subsequently,a hierarchical control framework is devised by incorporating a formulated switching control strategy.Finally,a simulation model for torque distribution control strategy between shafts is developed on the Matlab/Simulink platform,followed by simulation and experimental verification.The results are presented as follows:the inter-shaft torque distribution strategy established in this paper increases the average longitudinal acceleration by 0.13 m/s^(2) and 0.14 m/s^(2) under the control of low and high to low adhesion road surfaces,respectively.Under the control of the single-line shifting condition,the yaw velocity can successfully follow the expected value with a maximum value of 0.61 rad/s.The side deflection angle of the center of mass does not exceed 2.8°,which can follow the ideal trajectory and improve power and safety.展开更多
Mode-division multiplexing technology has been proposed as a crucial technique for enhancing communication capacity and alleviating growing communication demands.Optical switching,which is an essential component of op...Mode-division multiplexing technology has been proposed as a crucial technique for enhancing communication capacity and alleviating growing communication demands.Optical switching,which is an essential component of optical communication systems,enables information exchange between channels.However,existing optical switching solutions are inadequate for addressing flexible information exchange among the mode channels.In this study,we introduced a flexible mode switching system in a multimode fibre based on an optical neural network chip.This system utilised the flexibility of on-chip optical neural networks along with an all-fibre orbital angular momentum(OAM)mode multiplexer-demultiplexer to achieve mode switching among the three OAM modes within a multimode fibre.The system adopted an improved gradient descent algorithm to achieve training for arbitrary 3×3 exchange matrices and ensured maximum crosstalk of less than-18.7 dB,thus enabling arbitrary inter-mode channel information exchange.The proposed optical-neural-network-based mode-switching system was experimentally validated by successfully transmitting different modulation formats across various modes.This innovative solution holds promise for providing effective optical switching in practical multimode communication networks.展开更多
A hundred-watt-level spatial mode switchable all-fiber laser is demonstrated based on a master oscillator power amplifier scheme.The performance of the amplifier with two seed lasers,i.e.,with the acoustically induced...A hundred-watt-level spatial mode switchable all-fiber laser is demonstrated based on a master oscillator power amplifier scheme.The performance of the amplifier with two seed lasers,i.e.,with the acoustically induced fiber grating (AIFG) mode converter inside and outside the seed laser cavity,is investigated.Real-time mode switching with millisecond scale switching time between the LP;and LP;modes while operating in full power (>100 W) is realized through an AIFG driven by radio frequency modulation.This work could provide a good reference for realizing high-power agile mode switchable fiber lasers for practical applications.展开更多
Due to the advantages such as low line cost,low transmission loss,and high power supply reliability,DC distribution networks have become the main development trend for future distribution networks.In this paper,a typi...Due to the advantages such as low line cost,low transmission loss,and high power supply reliability,DC distribution networks have become the main development trend for future distribution networks.In this paper,a typical DC distribution network with multiple voltage levels is considered as a research object.It is proposed that the interface converters between DC buses with different voltage levels be implemented through the series-parallel combination of full-bridge LLC resonant converters.To realize the decentralized self-discipline control of DC voltage under various working conditions,different slack buses are prepared according to the voltage ranges of the DC buses,and the voltage regulation modes of the DC distribution network are divided into main voltage regulation mode,backup voltage regulation mode,and off-grid voltage droop regulation mode.By introducing a voltage coefficient related to DC voltage deviation as a basis for mode switching,the voltage fluctuations caused by slow switching between control modes in the method of traditional voltage margin control is reduced,facilitating fast and smooth switching between different voltage regulation modes.Finally,a simulation model for DC distribution networks is constructed utilizing MATLAB/Simulink.Simulation results verify the effectiveness and feasibility of the proposed voltage regulation modes and switching methods for DC distribution networks.Finally,an experimental platform is also constructed to verify the feasibility of the mode switching method proposed in this paper.展开更多
A power train dynamics model of a coaxial parallel hybrid electric vehicle (HEV) was built for different clutch operating states. With the state vector constituted by the motor rotation speed and the clutch transmit...A power train dynamics model of a coaxial parallel hybrid electric vehicle (HEV) was built for different clutch operating states. With the state vector constituted by the motor rotation speed and the clutch transmitting torque at two successive time steps, a discrete state space model for estimating the clutch transmitting torque was built, and the Kalman filtering algorithm was used to estimate the clutch transmitting torque. The Matlab/Simulink was employed to simulate the clutch transmitting torque for two mode-switch processes. Estimation errors were analyzed through compa- ring the estimated and simulated values of the clutch torque. Impact of the noise covariance and the sample time on clutch torque estimation errors were explored. The results show that the developed estimation method can be used to estimate the clutch transmitting torque for HEV with good accura- cy. The results are useful for torque direct control of automatic diaphragm clutches.展开更多
Cell death is typically defined either as apoptosis or necrosis. Because the consequences of apoptosis and necrosis are quite different for an entire organism, the investigation of the cell-death-mode switch has consi...Cell death is typically defined either as apoptosis or necrosis. Because the consequences of apoptosis and necrosis are quite different for an entire organism, the investigation of the cell-death-mode switch has considerable clinical significance. The existence of a necrosis-to-apoptosis switch induced by hydrogen peroxide in macrophage cell line RAW 264.7 cells was confirmed by using flow cytometry and fluorescence microscopy. With the help of computational simulations, this study predicted that negative feedbacks between NF-κB and MAPKs are implicated in converting necrosis into apoptosis in macrophages exposed to hydrogen peroxide, which has significant implications.展开更多
We report the observation of electric field induced random lasing in a dye doped liquid crystal system. This was achieved by using a liquid crystal host with negative dielectric anisotropy doped with laser dye PM 597 ...We report the observation of electric field induced random lasing in a dye doped liquid crystal system. This was achieved by using a liquid crystal host with negative dielectric anisotropy doped with laser dye PM 597 in a 75 μm cell with a homeotropic alignment layer. In the absence of an applied field, only amplified spontaneous emission was observed since the liquid crystal orientation was uniform. However, application of a field resulted in a fieldinduced planar-like configuration with local nonuniformity in liquid crystal orientation. This led to random lasing in the energized state(voltage greater than a transition threshold). The onset of lasing occurs by application of either a spatially homogenous or a spatially inhomogeneous electric field across the liquid crystal. The characteristics of the emission spectra as a function of different(i) dye concentration and(ii) applied voltage were investigated using nanosecond pulsed laser excitation at 532 nm. The effects of using an inhomogeneous field were compared to the use of a homogenous field and reported. It is shown that the spatial configuration can be used to alter the emission spectra of the system. The work is used to suggest a new configuration, referred to here as"reverse mode," for liquid crystal-based random lasers. This new configuration may provide additional avenues for their use in commercial devices.展开更多
To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of...To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of the legarm chain. When the robot performs a task, reconfigurable configuration and mode switching can be achieved using this joint. In contrast from traditional quadruped robots, this robot can stack in a designated area to optimize the occupied volume in a nonworking state. Kinematics modeling and dynamics modeling are established to evaluate the mechanical properties for multiple modes. All working modes of the robot are classified, which can be defined as deployable mode, locomotion mode and operation mode. Based on the stability margin and mechanical modeling, switching analysis and evaluation between each mode is carried out. Finally, the prototype experimental results verify the function realization and switching stability of multimode and provide a design method to integrate and perform multimode for quadruped robots with deployable characteristics.展开更多
This paper explores and proposes a design solution of an integrated skip cycle mode (SCM) control circuit with a simple structure. The design is simulated and implemented with XD10H-1.0μm modular DIMOS 650 V proces...This paper explores and proposes a design solution of an integrated skip cycle mode (SCM) control circuit with a simple structure. The design is simulated and implemented with XD10H-1.0μm modular DIMOS 650 V process. In order to meet the requirement of a wide temperature range and high yields of products, the schematic extracted from the layout is simulated with five process corners at 27℃ and 90℃. Simulation results demonstrate that the proposed integrated circuit is immune to noise and achieves skipping cycle control when switching mode power supply (SMPS) works with low load or without load.展开更多
This paper proposes a high-speed nonsingular terminal switched sliding mode control(HNT-SSMC) strategy for robot manipulators. The proposed approach enhances the control system performance by switching among appropria...This paper proposes a high-speed nonsingular terminal switched sliding mode control(HNT-SSMC) strategy for robot manipulators. The proposed approach enhances the control system performance by switching among appropriate sliding mode controllers according to different control demands in different regions of the state space. It is shown that the highspeed nonsingular terminal switched sliding mode(HNT-SSM)which is the representation of different control demands and enforced by the HNT-SSMC has the property of global highspeed convergence compared with the nonsingular fast terminal sliding mode(NFTSM), and provides the global non-singularity.The simulation study of an application example is carried out to validate the effectiveness of the proposed strategy.展开更多
We first experimentally demonstrate a laser-diode end-pumped self-Q-switched and mode-locked Nd,Cr:YAG green laser with a KTP crystal as the intra-cavity frequency doubler. The device produces an average output power...We first experimentally demonstrate a laser-diode end-pumped self-Q-switched and mode-locked Nd,Cr:YAG green laser with a KTP crystal as the intra-cavity frequency doubler. The device produces an average output power of 680 mW at 532 nm. The corresponding pulse width of the Q-switched envelope of the green laser is 170 + 20 ns. The mode-locked pulses have a repetition rate of approximately 183 MHz and the average pulse duration is estimated to be around sub-nanosecond. It is found that the intra-cavity frequency doubling greatly improves the modulation depth and stability of the mode-locked pulses within the Q-switched envelope.展开更多
In this paper, the effect of injected energy on low energy single longitudinal mode (SLM) pre-lase Q-switched is analyzed and the optimization procedure is shown in detail. Here, taking the Pr:YLF laser as an example ...In this paper, the effect of injected energy on low energy single longitudinal mode (SLM) pre-lase Q-switched is analyzed and the optimization procedure is shown in detail. Here, taking the Pr:YLF laser as an example of low energy laser, and the parameters of Pr:YLF laser by using pre-lase have been shown. Compared with normal Q-switched laser, the single pulse energy reaches 60.16% and the pulse width exceeds 39.73% when the same maximum energy is injected and SLM is achieved in pre-lase. The analysis results show that pre-lase is suitable for low energy laser to obtain SLM and there be an optimal performance to achieve the optimal energy output.展开更多
By applying switch-signal theory, the interaction between MOS transmission switch-ing transistor and current signal in current-mode CMOS circuits is analyzed, and the theory oftransmission current-switches which is su...By applying switch-signal theory, the interaction between MOS transmission switch-ing transistor and current signal in current-mode CMOS circuits is analyzed, and the theory oftransmission current-switches which is suitable to current-mode CMOS circuits is proposed. Thecircuits, such as ternary full-adder etc., designed by using this theory have simpler circuit struc-tures and correct logic functions. It is confirmed that this theory is efficient in guiding the logicdesign of current-mode CMOS circuits at switch level.展开更多
基金Supported by Doctoral Fund of Ministry of Education of China(20101101110012)the National Natural Science Foundationof China(51175040)
文摘Based on analyzing the structure and working principle on electric vehicles (EVs) with dual motors coupled by planetarY gears, the control strategy of mode switching was proposed. The power interruption problem on EVs with automatic mechanical transmission (AMT) shifting was resolved. Based on the speed-torque characteristics of the planetary gears and the principle of the auxiliary motor' s zero speed braking, control features of mode switching were introduced. The mode shifting between the main motor mode and dual motors coupled driving were studied. Matlab/Simulink was adopted as a platform to develop the simulation model of EVs with dual motors drive system and 3 gears AMT. Simulation results demonstrated that the power interruption of dual motors drive system was solved during mode switching. The power requirements of EVs were satisfied, too.
基金supported by the Chinese Important National Science and Technology Specific Project(2010ZX03002-003-01)
文摘The mode switching between spatial multiplexing (SM) and space-time block code (STBC) diversity is investigated for the multiple-input multiple-output (MIMO) automatic repeat request (ARQ) system. Five important practical factors are considered in the proposed switching scheme: transmit correlation, ARQ technique, packet loss probability (PLP) constraint, discrete rate transmission (DRT) and channel coding. Under the spatially correlated channel, the distributions of the post signal-to-interference-plus- noise ratio (SiNR) for the SM mode and the STBC mode are obtained by using Gamma approximations. Then this paper derives the closed-form expressions of the PLP and the throughput for different modes when the ARQ technique is employed, based on which the mode switching algorithm is proposed to improve the spectral efficency. In the simulation, the correction of the expressions is first verified. Then, the significant gain observed by the proposed algorithm is presented. Since the switching point is the key parameter to implement the mode switching, this paper also shows how the switching point is affected by the practical factors considered.
基金supported by the National Natural Science Foundation of China(No.52177077)by the Science and Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,Grant J20210148.
文摘Industrial parks(IPs)play a crucial role in facilitating economic efficiency and comprehensive energy utilization in the industrial age.At the same time,multi-energy coupling and management of various types of energy in IP have become serious challenges.In this paper,combined heat and power unit(CHP)model considering operation mode switching characteristics is formulated by exploring its internal composition to improve output flexibility of the energy supply side.Then,heat and electricity integrated energy system(HE-IES)optimal dispatch and pricing model are established,taking electricity and heat demand response strategy and steam thermal inertia property into account.Based on the above models,a mixed-integer bilinear programming framework is designed to coordinate the day-ahead operation and pricing strategy of the HE-IES in the IP.The scenario study is carried out on a practical industrial park in Southern China.Numerical results indicate the proposed mechanism can effectively improve IP’s energy utilization and economic efficiency.
基金supported by the Jiangsu Key R&D Plan under Grants BE2022053-3.
文摘Electric-hydraulic hybrid power steering(E-HHPS)system,a novel device with multiple modes for commercial electric vehicles,is designed to realize both superior steering feel and high energy efficiency.However,inconsistent steering perfor-mance occurs in the mode-switching process due to different dynamic characteristics of electric and hydraulic components,which even threatens driving safety.In this paper,mode-switching strategy and dynamic compensation control method are proposed for the E-HHPS system to eliminate the inconsistency of steering feel,which comprehensively considers ideal assistance characteristics and energy consumption of the system.Then,the influence of disturbances on system stability is analyzed,and H_(∞)robust controller is employed to guarantee system robustness and stability.The experimental results dem-onstrate that the proposed strategy can provide a steering system with natural steering feel without apparent inconsistency and effectively minimize energy consumption.
基金funded by the National Natural Science Foundation of China(Grant No.51905219,No.52272368)the Postdoctoral Science Foundation of China(Grant No.2023M731444)+2 种基金the Young Elite Scientists Sponsorship Program by CAST(2020QNRC001)the Key Research and Development Program of Zhenjiang City(No.GY2021001)the Project of Faculty of Agricultural Equipment of Jiangsu University(No.NZXB20210103).
文摘The power split hybrid electric vehicle(HEV)adopts a power coupling configuration featuring dual planetary gearsets and multiple clutches,enabling diverse operational modes through clutch engagement and disengagement.The multi-clutch configuration usually involves the collaboration of two clutches during the transient mode switching process,thereby substantially elevating control complexity.This study focuses on power split HEVs that integrate multi-clutch mechanisms and investigates how different clutch collaboration manners impact the characteristics of transient mode switching.The powertrain model for the power-split HEV is established utilizing matrix-based methodologies.Through the formulation of clutch torque curves and clutch collaboration models,this research systematically explores the effects of clutch engagement timing and the duration of clutch slipping state on transient mode switching behaviors.Building upon this analysis,an optimization problem for control parameters pertaining to the two collaborative clutches is formulated.The simulated annealing algorithm is employed to optimize these control parameters.Simulation results demonstrate that the clutch collaboration manners have a great influence on the transient mode switching performance.Compared with the pre-calibrated benchmark and the optimal solution derived by the genetic algorithm,the maximal longitudinal jerk and clutch slipping work during the transient mode switching process is reduced obviously with the optimal control parameters derived by the simulated annealing algorithm.The study provides valuable insights for the dynamic coordinated control of the power-split HEVs featuring complex clutch collaboration mechanisms.
基金The research is funded partially by the Agricultural Science and Technology Independent Innovation Fund of Jiangsu Province(Grant No.CX(22)3101)the National Key R&D Program(Grant No.2022YFD2001204)+1 种基金the International Science and Technology Cooperation Project of Jiangsu Province(Grant No.BZ2022002)the Natural Science Foundation of Jiangsu Province(Grant No.BK20210407).
文摘The high-gap plant protection machine is taken in this paper as the research object to ensure the good driving power and safety of the high-gap plant protection machine,and the control strategy of inter-shaft torque distribution is established under different working conditions to improve vehicle power and lateral stability.The anticipated demand torque is initially determined based on the structural characteristics and operational principles of the plant protection machine.Subsequently,a hierarchical control framework is devised by incorporating a formulated switching control strategy.Finally,a simulation model for torque distribution control strategy between shafts is developed on the Matlab/Simulink platform,followed by simulation and experimental verification.The results are presented as follows:the inter-shaft torque distribution strategy established in this paper increases the average longitudinal acceleration by 0.13 m/s^(2) and 0.14 m/s^(2) under the control of low and high to low adhesion road surfaces,respectively.Under the control of the single-line shifting condition,the yaw velocity can successfully follow the expected value with a maximum value of 0.61 rad/s.The side deflection angle of the center of mass does not exceed 2.8°,which can follow the ideal trajectory and improve power and safety.
基金supported by the National Natural Science Foundation of China(NSFC)(62125503,62261160388)Natural Science Foundation of Hubei Province of China(2023AFA028)+1 种基金Key R&D Program of Hubei Province of China(2020BAB001,2021BAA024)Innovation Project of Optics Valley Laboratory(OVL2021BG004).
文摘Mode-division multiplexing technology has been proposed as a crucial technique for enhancing communication capacity and alleviating growing communication demands.Optical switching,which is an essential component of optical communication systems,enables information exchange between channels.However,existing optical switching solutions are inadequate for addressing flexible information exchange among the mode channels.In this study,we introduced a flexible mode switching system in a multimode fibre based on an optical neural network chip.This system utilised the flexibility of on-chip optical neural networks along with an all-fibre orbital angular momentum(OAM)mode multiplexer-demultiplexer to achieve mode switching among the three OAM modes within a multimode fibre.The system adopted an improved gradient descent algorithm to achieve training for arbitrary 3×3 exchange matrices and ensured maximum crosstalk of less than-18.7 dB,thus enabling arbitrary inter-mode channel information exchange.The proposed optical-neural-network-based mode-switching system was experimentally validated by successfully transmitting different modulation formats across various modes.This innovative solution holds promise for providing effective optical switching in practical multimode communication networks.
基金This work was supported in part by National Natural Science Foundation of China(No.61805280)Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology(No.SKL2020KF03)Research Plan of National University of Defense Technology(No.ZK19-07)。
文摘A hundred-watt-level spatial mode switchable all-fiber laser is demonstrated based on a master oscillator power amplifier scheme.The performance of the amplifier with two seed lasers,i.e.,with the acoustically induced fiber grating (AIFG) mode converter inside and outside the seed laser cavity,is investigated.Real-time mode switching with millisecond scale switching time between the LP;and LP;modes while operating in full power (>100 W) is realized through an AIFG driven by radio frequency modulation.This work could provide a good reference for realizing high-power agile mode switchable fiber lasers for practical applications.
基金supported by Fundamental Research Funds for the Central Universities(No.2019JBM057)。
文摘Due to the advantages such as low line cost,low transmission loss,and high power supply reliability,DC distribution networks have become the main development trend for future distribution networks.In this paper,a typical DC distribution network with multiple voltage levels is considered as a research object.It is proposed that the interface converters between DC buses with different voltage levels be implemented through the series-parallel combination of full-bridge LLC resonant converters.To realize the decentralized self-discipline control of DC voltage under various working conditions,different slack buses are prepared according to the voltage ranges of the DC buses,and the voltage regulation modes of the DC distribution network are divided into main voltage regulation mode,backup voltage regulation mode,and off-grid voltage droop regulation mode.By introducing a voltage coefficient related to DC voltage deviation as a basis for mode switching,the voltage fluctuations caused by slow switching between control modes in the method of traditional voltage margin control is reduced,facilitating fast and smooth switching between different voltage regulation modes.Finally,a simulation model for DC distribution networks is constructed utilizing MATLAB/Simulink.Simulation results verify the effectiveness and feasibility of the proposed voltage regulation modes and switching methods for DC distribution networks.Finally,an experimental platform is also constructed to verify the feasibility of the mode switching method proposed in this paper.
基金Supported by the National High Technology Research and Development Program of China(863Program)(2012AA111104)
文摘A power train dynamics model of a coaxial parallel hybrid electric vehicle (HEV) was built for different clutch operating states. With the state vector constituted by the motor rotation speed and the clutch transmitting torque at two successive time steps, a discrete state space model for estimating the clutch transmitting torque was built, and the Kalman filtering algorithm was used to estimate the clutch transmitting torque. The Matlab/Simulink was employed to simulate the clutch transmitting torque for two mode-switch processes. Estimation errors were analyzed through compa- ring the estimated and simulated values of the clutch torque. Impact of the noise covariance and the sample time on clutch torque estimation errors were explored. The results show that the developed estimation method can be used to estimate the clutch transmitting torque for HEV with good accura- cy. The results are useful for torque direct control of automatic diaphragm clutches.
基金supported by the National Natural Science Foundation of China (Grant No. 30870588)the Science Fund for Creative Research Groups (Grant No. 30821006)the Program for New Century Excellent Talents in University (Grant No. NCET-06-0445)
文摘Cell death is typically defined either as apoptosis or necrosis. Because the consequences of apoptosis and necrosis are quite different for an entire organism, the investigation of the cell-death-mode switch has considerable clinical significance. The existence of a necrosis-to-apoptosis switch induced by hydrogen peroxide in macrophage cell line RAW 264.7 cells was confirmed by using flow cytometry and fluorescence microscopy. With the help of computational simulations, this study predicted that negative feedbacks between NF-κB and MAPKs are implicated in converting necrosis into apoptosis in macrophages exposed to hydrogen peroxide, which has significant implications.
文摘We report the observation of electric field induced random lasing in a dye doped liquid crystal system. This was achieved by using a liquid crystal host with negative dielectric anisotropy doped with laser dye PM 597 in a 75 μm cell with a homeotropic alignment layer. In the absence of an applied field, only amplified spontaneous emission was observed since the liquid crystal orientation was uniform. However, application of a field resulted in a fieldinduced planar-like configuration with local nonuniformity in liquid crystal orientation. This led to random lasing in the energized state(voltage greater than a transition threshold). The onset of lasing occurs by application of either a spatially homogenous or a spatially inhomogeneous electric field across the liquid crystal. The characteristics of the emission spectra as a function of different(i) dye concentration and(ii) applied voltage were investigated using nanosecond pulsed laser excitation at 532 nm. The effects of using an inhomogeneous field were compared to the use of a homogenous field and reported. It is shown that the spatial configuration can be used to alter the emission spectra of the system. The work is used to suggest a new configuration, referred to here as"reverse mode," for liquid crystal-based random lasers. This new configuration may provide additional avenues for their use in commercial devices.
基金Supported by National Natural Science Foundation of China (Grant Nos. 52375003, 52205006)National Key R&D Program of China (Grant No. 2019YFB1309600)。
文摘To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of the legarm chain. When the robot performs a task, reconfigurable configuration and mode switching can be achieved using this joint. In contrast from traditional quadruped robots, this robot can stack in a designated area to optimize the occupied volume in a nonworking state. Kinematics modeling and dynamics modeling are established to evaluate the mechanical properties for multiple modes. All working modes of the robot are classified, which can be defined as deployable mode, locomotion mode and operation mode. Based on the stability margin and mechanical modeling, switching analysis and evaluation between each mode is carried out. Finally, the prototype experimental results verify the function realization and switching stability of multimode and provide a design method to integrate and perform multimode for quadruped robots with deployable characteristics.
文摘This paper explores and proposes a design solution of an integrated skip cycle mode (SCM) control circuit with a simple structure. The design is simulated and implemented with XD10H-1.0μm modular DIMOS 650 V process. In order to meet the requirement of a wide temperature range and high yields of products, the schematic extracted from the layout is simulated with five process corners at 27℃ and 90℃. Simulation results demonstrate that the proposed integrated circuit is immune to noise and achieves skipping cycle control when switching mode power supply (SMPS) works with low load or without load.
基金supported partially by the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region(NJZY13279)
文摘This paper proposes a high-speed nonsingular terminal switched sliding mode control(HNT-SSMC) strategy for robot manipulators. The proposed approach enhances the control system performance by switching among appropriate sliding mode controllers according to different control demands in different regions of the state space. It is shown that the highspeed nonsingular terminal switched sliding mode(HNT-SSM)which is the representation of different control demands and enforced by the HNT-SSMC has the property of global highspeed convergence compared with the nonsingular fast terminal sliding mode(NFTSM), and provides the global non-singularity.The simulation study of an application example is carried out to validate the effectiveness of the proposed strategy.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60278024 and 60438020).
文摘We first experimentally demonstrate a laser-diode end-pumped self-Q-switched and mode-locked Nd,Cr:YAG green laser with a KTP crystal as the intra-cavity frequency doubler. The device produces an average output power of 680 mW at 532 nm. The corresponding pulse width of the Q-switched envelope of the green laser is 170 + 20 ns. The mode-locked pulses have a repetition rate of approximately 183 MHz and the average pulse duration is estimated to be around sub-nanosecond. It is found that the intra-cavity frequency doubling greatly improves the modulation depth and stability of the mode-locked pulses within the Q-switched envelope.
文摘In this paper, the effect of injected energy on low energy single longitudinal mode (SLM) pre-lase Q-switched is analyzed and the optimization procedure is shown in detail. Here, taking the Pr:YLF laser as an example of low energy laser, and the parameters of Pr:YLF laser by using pre-lase have been shown. Compared with normal Q-switched laser, the single pulse energy reaches 60.16% and the pulse width exceeds 39.73% when the same maximum energy is injected and SLM is achieved in pre-lase. The analysis results show that pre-lase is suitable for low energy laser to obtain SLM and there be an optimal performance to achieve the optimal energy output.
基金Supported by National Natural Science Foundation of China
文摘By applying switch-signal theory, the interaction between MOS transmission switch-ing transistor and current signal in current-mode CMOS circuits is analyzed, and the theory oftransmission current-switches which is suitable to current-mode CMOS circuits is proposed. Thecircuits, such as ternary full-adder etc., designed by using this theory have simpler circuit struc-tures and correct logic functions. It is confirmed that this theory is efficient in guiding the logicdesign of current-mode CMOS circuits at switch level.