In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transfo...In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.展开更多
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the...There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.展开更多
In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(S...In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively.展开更多
The internal modes of incoherent vector solitons (IVSs) in photovoltaic photorefractive materials are investigated in the framework of coupled nonlinear Schrodinger equations. It is found that there is a pair of int...The internal modes of incoherent vector solitons (IVSs) in photovoltaic photorefractive materials are investigated in the framework of coupled nonlinear Schrodinger equations. It is found that there is a pair of internal modes corresponding to a bright-bright IVS. The propagation dynamics of the bright-bright IVS perturbed by the internal modes is simulated by numerical method.展开更多
Many animals possess actively movable tactile sensors in their heads,to explore the near-range space.During locomotion,an antenna is used in near range orientation,for example,in detecting,localizing,probing,and negot...Many animals possess actively movable tactile sensors in their heads,to explore the near-range space.During locomotion,an antenna is used in near range orientation,for example,in detecting,localizing,probing,and negotiating obstacles.A bionic tactile sensor used in the present work was inspired by the antenna of the stick insects.The sensor is able to detect an obstacle and its location in 3 D(Three dimensional) space.The vibration signals are analyzed in the frequency domain using Fast Fourier Transform(FFT) to estimate the distances.Signal processing algorithms,Artificial Neural Network(ANN) and Support Vector Machine(SVM) are used for the analysis and prediction processes.These three prediction techniques are compared for both distance estimation and material classification processes.When estimating the distances,the accuracy of estimation is deteriorated towards the tip of the probe due to the change in the vibration modes.Since the vibration data within that region have high a variance,the accuracy in distance estimation and material classification are lower towards the tip.The change in vibration mode is mathematically analyzed and a solution is proposed to estimate the distance along the full range of the probe.展开更多
文摘In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.
基金Project(61374140)supported by the National Natural Science Foundation of China
文摘There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.
基金Projects(61471370,61401479)supported by the National Natural Science Foundation of China
文摘In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574167).
文摘The internal modes of incoherent vector solitons (IVSs) in photovoltaic photorefractive materials are investigated in the framework of coupled nonlinear Schrodinger equations. It is found that there is a pair of internal modes corresponding to a bright-bright IVS. The propagation dynamics of the bright-bright IVS perturbed by the internal modes is simulated by numerical method.
文摘Many animals possess actively movable tactile sensors in their heads,to explore the near-range space.During locomotion,an antenna is used in near range orientation,for example,in detecting,localizing,probing,and negotiating obstacles.A bionic tactile sensor used in the present work was inspired by the antenna of the stick insects.The sensor is able to detect an obstacle and its location in 3 D(Three dimensional) space.The vibration signals are analyzed in the frequency domain using Fast Fourier Transform(FFT) to estimate the distances.Signal processing algorithms,Artificial Neural Network(ANN) and Support Vector Machine(SVM) are used for the analysis and prediction processes.These three prediction techniques are compared for both distance estimation and material classification processes.When estimating the distances,the accuracy of estimation is deteriorated towards the tip of the probe due to the change in the vibration modes.Since the vibration data within that region have high a variance,the accuracy in distance estimation and material classification are lower towards the tip.The change in vibration mode is mathematically analyzed and a solution is proposed to estimate the distance along the full range of the probe.