For the effect of thermal treatment on the mode-I fracture toughness(FT), three crystalline rocks(two basalts and one tonalite) were experimentally investigated. Semi-circular bend specimens of the rocks were prepared...For the effect of thermal treatment on the mode-I fracture toughness(FT), three crystalline rocks(two basalts and one tonalite) were experimentally investigated. Semi-circular bend specimens of the rocks were prepared following the method suggested by the International Society for Rock Mechanics(ISRM)and were treated at various temperatures ranging from room temperature(25 ℃) to 600 ℃. Mode-I FT was correlated with tensile strength(TS), ultrasonic velocities, and Young’s modulus(YM). Additionally,petrographic and X-ray diffraction analyses were carried out to find the chemical changes resulting from the heat treatment. Further, scanning electron microscopy(SEM) was conducted to observe the micro structural changes when subjected to high temperatures. These experiments demonstrate that heat treatment has a strong negative impact on the FT and mechanical properties of the rocks. From room temperature to 600 ℃, mode-I FT values of massive basalt, giant plagioclase basalt, and tonalite were reduced by nearly 52%, 68%, and 64%, respectively. Also, at all temperature levels, FT and mechanical properties are found to be exponentially correlated. However, the exact nature of the relationship mainly depends on rock type. Besides, TS was found to be a better indicator of degradation degree than the mode-I FT. SEM images show that micro crack density and structural disintegration of the mineral grains increase with temperature. These physical changes confirm the observed reduction in the stiffness of heat-treated crystalline rocks.展开更多
The fracture toughness of rocks is a critical fracturing parameter in geo-energy exploitation playing a significant role in fracture mechanics and hydraulic fracturing.The edge-notched disk bending(ENDB)specimens are ...The fracture toughness of rocks is a critical fracturing parameter in geo-energy exploitation playing a significant role in fracture mechanics and hydraulic fracturing.The edge-notched disk bending(ENDB)specimens are employed to measure the entire range of mixed-modeⅠ/Ⅲfracture toughness of Longmaxi shale.To theoretically interpret the fracture mechanisms,this research first introduces the detailed derivations of three established fracture criteria.By distinguishing the volumetric and distortional strain energy densities,an improved three-dimensional mean strain energy density(MSED)criterion is proposed.As the critical volumetric to distortional MSED ratio decreases,the transition from tensiondominated fracture to shear-dominated fracture is observed.Our results indicate that both peak load and applied energy increase significantly with the transition from pure mode I(i.e.,tension)to pure modeⅢ(i.e.,torsion or tearing)since mode-Ⅲcracking happens in a twisted manner and mode-Ⅰcracking occurs in a coplanar manner.The macroscopic fracture signatures are consistent with those of triaxial hydraulic fracturing.The average ratio of pure mode-Ⅲfracture toughness to pure mode-Ⅰfracture toughness is 0.68,indicating that the obtained mode-Ⅲfracture resistance for a tensionbased loading system is apparent rather than true.Compared to the three mainstream fracture criteria,the present fracture criterion exhibits greater competitiveness and can successfully evaluate and predict mixed-modeⅠ/Ⅲfracture toughness of distinct materials and loading methods.展开更多
The fracture toughness of extruded Mg-1Zn-2Y(at.%)alloys,featuring a multimodal microstructure containing fine dynamically recrystallized(DRXed)grains with random crystallographic orientation and coarse-worked grains ...The fracture toughness of extruded Mg-1Zn-2Y(at.%)alloys,featuring a multimodal microstructure containing fine dynamically recrystallized(DRXed)grains with random crystallographic orientation and coarse-worked grains with a strong fiber texture,was investigated.The DRXed grains comprised randomly oriented equiaxedα-Mg grains.In contrast,the worked grains includedα-Mg and long-period stacking ordered(LPSO)phases that extended in the extrusion direction(ED).Both types displayed a strong texture,aligning the10.10direction parallel to the ED.The volume fractions of the DRXed and worked grains were controlled by adjusting the extrusion temperature.In the longitudinal-transverse(L-T)orientation,where the loading direction was aligned parallel to the ED,there was a tendency for the conditional fracture toughness,KQ,tended to increase as the volume fraction of the worked grains increased.However,the KQ values in the T-L orientation,where the loading direction was perpendicular to the ED,decreased with an increase in the volume fraction of the worked grains.This suggests strong anisotropy in the fracture toughness of the specimen with a high volume fraction of the worked grains,relative to the test direction.The worked grains,which included the LPSO phase and were elongated perpendicular to the initial crack plane,suppressed the straight crack extension,causing crack deflection,and generating secondary cracks.Thus,these worked grains significantly contributed to the fracture toughness of the extruded Mg-1Zn-2Y alloys in the L-T orientation.展开更多
Powder hot isostatic pressing(HIP) is an effective method to achieve near-net-shape manufacturing of high-quality complex thinwalled titanium alloy parts, and it has received extensive attention in recent years. Howev...Powder hot isostatic pressing(HIP) is an effective method to achieve near-net-shape manufacturing of high-quality complex thinwalled titanium alloy parts, and it has received extensive attention in recent years. However, there are few reports about the microstructure characteristics on the strengthening and toughening mechanisms of powder hot isostatic pressed(HIPed) titanium alloys. Therefore, TA15powder was prepared into alloy by HIP approach, which was used to explore the microstructure characteristics at different HIP temperatures and the corresponding tensile properties and fracture toughness. Results show that the fabricated alloy has a “basket-like structure” when the HIP temperature is below 950℃, consisting of lath clusters and surrounding small equiaxed grains belts. When the HIP temperature is higher than 950℃, the microstructure gradually transforms into the Widmanstatten structure, accompanied by a significant increase in grain size. The tensile strength and elongation are reduced from 948 MPa and 17.3% for the 910℃ specimen to 861 MPa and 10% for the 970℃ specimen.The corresponding tensile fracture mode changes from transcrystalline plastic fracture to mixed fracture including intercrystalline cleavage.The fracture toughness of the specimens increases from 82.64 MPa·m^(1/2)for the 910℃ specimen to 140.18 MPa·m^(1/2)for the 970℃ specimen.Specimens below 950℃ tend to form holes due to the prior particle boundaries(PPBs), which is not conducive to toughening. Specimens above 950℃ have high fracture toughness due to the crack deflection, crack branching, and shear plastic deformation of the Widmanstatten structure. This study provides a valid reference for the development of powder HIPed titanium alloy.展开更多
This study investigates the tensile failure mechanisms in granitic rock samples at different scales by means of different types of tests.To do that,we have selected a granitic rock type and obtained samples of differe...This study investigates the tensile failure mechanisms in granitic rock samples at different scales by means of different types of tests.To do that,we have selected a granitic rock type and obtained samples of different sizes with the diameter ranging from 30 mm to 84 mm.The samples have been subjected to direct tensile strength(DTS)tests,indirect Brazilian tensile strength(BTS)tests and to two fracture toughness testing approaches.Whereas DTS and fracture toughness were found to consistently grow with sample size,this trend was not clearly identified for BTS,where after an initial grow,a plateau of results was observed.This is a rather complete database of tensile related properties of a single rock type.Even if similar databases are rare,the obtained trends are generally consistent with previous scatter and partial experimental programs.However,different observations apply to different types of rocks and experimental approaches.The differences in variability and mean values of the measured parameters at different scales are critically analysed based on the heterogeneity,granular structure and fracture mechanics approaches.Some potential relations between parameters are revised and an indication is given on potential sample sizes for obtaining reliable results.Extending this database with different types of rocks is thought to be convenient to advance towards a better understanding of the tensile strength of rock materials.展开更多
In this context,four specimens,i.e.(i)circumferentially notched cylindrical torsion(CNCT),(ii)circum-ferentially notched cylindrical direct tension(CNCDT),(iii)edge notch disc bend(ENDB)and(iv)three-point bend beam(3P...In this context,four specimens,i.e.(i)circumferentially notched cylindrical torsion(CNCT),(ii)circum-ferentially notched cylindrical direct tension(CNCDT),(iii)edge notch disc bend(ENDB)and(iv)three-point bend beam(3PBB),were utilized to measure the modesⅠandⅢfracture toughness values of gypsum.While the CNCT specimen provides pure modeⅢloading in a direct manner,this pure mode condition is indirectly produced by the ENDB specimen.The ENDB specimen provided lower KⅢc and a non-coplanar(i.e.twisted)fracture surface compared with the CNCT specimen,which showed a planar modeⅢfracture surface.The ENDB specimen is also employed for conducting pure modeⅠ(with different crack depths)and mixed modeⅠ/Ⅲtests.KIc value was independent of the notch depth,and it was consistent with the RILEM and ASTM standard methods.But the modeⅢfracture results were highly sensitive to the notch depth.While the fracture resistance against modeⅢwas significantly lower than that of modeⅠ,the greater work of fracture under modeⅢwas noticeable.展开更多
To address the problem of conventional approaches for mechanical property determination requiring destructive sampling, which may be unsuitable for in-service structures, the authors proposed a method for determining ...To address the problem of conventional approaches for mechanical property determination requiring destructive sampling, which may be unsuitable for in-service structures, the authors proposed a method for determining the quasi-static fracture toughness and impact absorbed energy of ductile metals from spherical indentation tests (SITs). The stress status and damage mechanism of SIT, mode I fracture, Charpy impact tests, and related tests were frst investigated through fnite element (FE) calculations and scanning electron microscopy (SEM) observations, respectively. It was found that the damage mechanism of SITs is diferent from that of mode I fractures, while mode I fractures and Charpy impact tests share the same damage mechanism. Considering the diference between SIT and mode I fractures, uniaxial tension and pure shear were introduced to correlate SIT with mode I fractures. Based on this, the widely used critical indentation energy (CIE) model for fracture toughness determination using SITs was modifed. The quasi-static fracture toughness determined from the modifed CIE model was used to evaluate the impact absorbed energy using the dynamic fracture toughness and energy for crack initiation. The efectiveness of the newly proposed method was verifed through experiments on four types of steels: Q345R, SA508-3, 18MnMoNbR, and S30408.展开更多
The role of α precipitates formed during aging in the fracture toughness and fracture behavior of β-type bio-titanium alloy Ti–29Nb–13Ta–4.6Zr(TNTZ) was studied. Results showed that the fracture toughness of the ...The role of α precipitates formed during aging in the fracture toughness and fracture behavior of β-type bio-titanium alloy Ti–29Nb–13Ta–4.6Zr(TNTZ) was studied. Results showed that the fracture toughness of the TNTZ alloy aged at 723 K decreases to the minimum of 72.07–73.19 kJ·m^(-2)when the aging time is extended to 4–8 h and then gradually increases and reaches 144.89 kJ·m^(-2)after 72 h. The decrease in fracture toughness within the aging time of 4–8 h is caused by the large stress concentration at the tip of acicular α precipitates with a high aspect ratio and the preferential crack propagation along the inhomogeneous acicular α precipitates distributed in “V-shape” and “nearly perpendicular shape”. When the aging time is extended to 8–72 h, the precrack tip is uniformly blunted, and the crack is effectively deflected by α precipitates with multi long axis directions, more high homogeneity, low aspect ratio, and large number density. Analysis of the effect of αprecipitates on the fracture behavior suggested that the number of long axis directions of α precipitates is the key controlling factor for the fracture behavior and fracture toughness of the TNTZ alloy aged for different times.展开更多
The surface fracture toughness is an important mechanical parameter for studying the failure behavior of air plasma sprayed(APS)thermal barrier coatings(TBCs).As APS TBCs are typical multilayer porous ceramic material...The surface fracture toughness is an important mechanical parameter for studying the failure behavior of air plasma sprayed(APS)thermal barrier coatings(TBCs).As APS TBCs are typical multilayer porous ceramic materials,the direct applications of the traditional single edge notched beam(SENB)method that ignores those typical structural characters may cause errors.To measure the surface fracture toughness more accurately,the effects of multilayer and porous characters on the fracture toughness of APS TBCs should be considered.In this paper,a modified single edge V-notched beam(MSEVNB)method with typical structural characters is developed.According to the finite element analysis(FEA),the geometry factor of the multilayer structure is recalculated.Owing to the narrower V-notches,a more accurate critical fracture stress is obtained.Based on the Griffith energy balance,the reduction of the crack surface caused by micro-defects is corrected.The MSEVNB method can measure the surface fracture toughness more accurately than the SENB method.展开更多
The influences of heat treatment on stress corrosion cracking (SCC), fracture toughness and strength of 7085 aluminum alloy were investigated by slow strain rate testing, Kahn tear testing combined with scanning ele...The influences of heat treatment on stress corrosion cracking (SCC), fracture toughness and strength of 7085 aluminum alloy were investigated by slow strain rate testing, Kahn tear testing combined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the fracture toughness of T74 overaging is increased by 22.9% at the expense of 13.6% strength, and retrogression and reaging (RRA) enhances fracture toughness 14.2% without reducing the strength compared with T6 temper. The fracture toughness of dual-retrogression and reaging (DRRA) is equivalent to that of T74 with an increased strength of 14.6%. The SCC resistance increases in the order: T6〈RRA〈DRRA≈T74. The differences of fracture toughness and SCC were explained on the basis of the role of matrix precipitates and grain boundary orecioitates.展开更多
A TiAl-Nb composite was prepared by spark plasma sintering (SPS) at 1250 °C and 50 MPa for 5 min from prealloyed TiAl powder and elemental Nb powder in a molar ratio of 9:1 for improving the fracture toughness...A TiAl-Nb composite was prepared by spark plasma sintering (SPS) at 1250 °C and 50 MPa for 5 min from prealloyed TiAl powder and elemental Nb powder in a molar ratio of 9:1 for improving the fracture toughness of TiAl alloy at room temperature. The microstructure, phase constitute, fracture surface and fracture toughness were determined by X-ray diffractometry, electron probe micro-analysis, scanning and transmission electron microscopy and mechanical testing. The results show that the sintered samples mainly consist of γ phase, O phase, niobium solid solution (Nbss) phase and B2 phase. The fracture toughness is as high as 28.7 MPa?m1/2 at room temperature. The ductile Nbss phase plays an important role in absorbing the fracture energy in front of the cracks. Moreover, B2 phase can branch the propagation of the cracks. The microhardness of each phase of the composite was also tested.展开更多
Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors ...Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors of frozen rock is evaluated by testing the tension fracture toughness(KIC)of frozen rock at different temperatures(i.e.-20℃,-15℃,-12℃,-10℃,-8℃,-6℃,-4℃,-2℃,and 0℃).Acoustic emission(AE)and digital image correlation(DIC)methods are utilized to analyze the microcrack propagation during fracturing.The melting of pore ice is measured using nuclear magnetic resonance(NMR)method.The results indicate that:(1)The KIC of frozen rock decreases moderately between-20℃ and-4℃,and rapidly between-4℃ and 0℃.(2)At-20℃ to-4℃,the fracturing process,deduced from the DIC results at the notch tip,exhibits three stages:elastic deformation,microcrack propagation and microcrack coalescence.However,at-4℃e0℃,only the latter two stages are observed.(3)At-4℃e0℃,the AE activities during fracturing are less than that at-20℃ to-4℃,while more small events are reported.(4)The NMR results demonstrate a reverse variation trend in pore ice content with increasing temperature,that is,a moderate decrease is followed by a sharp decrease and-4℃ is exactly the critical temperature.Next,we interpret the thawing-induced softening effect by linking the evolution in microscopic structure of frozen rock with its macroscopic fracture behaviors as follow:from-20℃ to-4℃,the thickening of the unfrozen water film diminishes the cementation strength between ice and rock skeleton,leading to the decrease in fracture parameters.From-4℃ to 0℃,the cementation effect of ice almost vanishes,and the filling effect of pore ice is reduced significantly,which facilitates microcrack propagation and thus the easier fracture of frozen rocks.展开更多
Based on the conventional compliance and area methods, a high precision method named the angle method is presented in this work. The interlaminar fracture toughness is determined by measurement of the load and the ben...Based on the conventional compliance and area methods, a high precision method named the angle method is presented in this work. The interlaminar fracture toughness is determined by measurement of the load and the bending angle at the loading point without measurement of the crack length, and the improvement of the conventional compliance method is made, which is more precise and can be used to general DCB specimen with unequal flexural stiffness of the cantilevers. The interlaminar fracture toughness in 0/ θ(θ =0°,30°,60°,90°) interfaces of two epoxy composites, one being the carbon fibre reinforced brittle matrix T300/4211, the other the carbon fibre reinforced tough matrix T300/3261, is measured by both compliance and angle methods, and the relationship between fracture toughness and the ply angle θ is obtained. It is found that the interlaminar fracture toughness is correlated with the type of matrix and the ply angles near the crack front.展开更多
Fracture is a common failure form of poplar laminated veneer lumber(LVL).In the present work,we performed an experimental study on the mode-I along-grain interlaminar fracture,mode-I cross-grain interlaminar fracture,...Fracture is a common failure form of poplar laminated veneer lumber(LVL).In the present work,we performed an experimental study on the mode-I along-grain interlaminar fracture,mode-I cross-grain interlaminar fracture,and mode-II interlaminar fracture of poplar LVL.We investigated stress mechanisms,failure modes,and fracture toughness values of the different fracture types.The experimental results revealed that the crack in the mode-I along-grain interlaminar fracture specimen propagated along the prefabricated crack direction,and the crack tip broke.The mode-I cross-grain interlaminar fracture specimen had cracks in the vertical direction near the prefabricated crack.In the mode-II interlaminar fracture specimen,cracks appeared along the initial prefabricated crack direction.The load–displacement curves of these three specimens were linear in the early stage of loading.With the increase in the load,a nonlinear segment appeared before crack propagation and a descending segment appeared after crack propagation.The nonlinear segments of the mode-I along-grain interlaminar fracture and mode-II interlaminar fracture were very short,and cracks expanded quickly after their initiation,resulting in brit-tle fracture.The nonlinear segment of the mode-I cross-grain interlaminar fracture was long,resulting in plastic failure.The average toughness values of the mode-I along-grain interlaminar fracture,mode-I cross-grain inter-laminar fracture,and mode-II interlaminar fracture were 15.43,270.15,and 39.72 MPa·mm^(1/2),respectively.展开更多
In order to investigate the fracture toughness, crack tip opening displacement (CTOD) experiments were conducted on two X70 pipeline steel plates with different rolling processes. Atter the experiments, optical micr...In order to investigate the fracture toughness, crack tip opening displacement (CTOD) experiments were conducted on two X70 pipeline steel plates with different rolling processes. Atter the experiments, optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to observe the microstructure and fracture morphology. The effects of precipi- tates on the fracture toughness and the crack initiation mechanism induced by inclusions were analyzed. The CTOD result shows that the steel with a lower finishing cooling temperature has a higher fracture toughness. Inchisiom with different shapes and two kinds of precipi- tates with different sizes were observed. It can be concluded that precipitates with different sizes have different effects and mechanisms on the fracture toughness. Distinguished fi'om the earlier researches, inclusions enriched in silicon can be also served as the crack initiation.展开更多
Brittle fracture occurs frequently in rails and thermite welded joints, which intimidates the security and reliability of railway ser- vice. Railways in cold regions, such as Qinghai-Tibet Railway, make the problem of...Brittle fracture occurs frequently in rails and thermite welded joints, which intimidates the security and reliability of railway ser- vice. Railways in cold regions, such as Qinghai-Tibet Railway, make the problem of brittle fi'acture in rails even worse. A series of tests such as uniaxial tensile tests, Charpy impact tests, and three-point bending tests were carried out at low temperature to investigate the mechanical properties and fracture toughness of U71Mn and U75V rail steels and their thermite welds. Fracture micromechanisms were analyzed by scanning electron microscopy (SEM) on the fracture surfaces of the tested specimens. The ductility indices (percentage elongation aider frac- ture and percentage reduction of area) and the toughness indices (Charpy impact energy Ak and plane-strain fracture toughness Kic) of the two kinds of rail steels and the corresponding thermite welds all decrease as the temperature decreases. The thermite welds are more critical to fracture than the rail steel base metals, as indicated by a higher yield-to-ultimate ratio and a much lower Charpy impact energy. U71Mn rail steel is relatively higher in toughness than U75V, as demonstrated by larger Ak and Klc values. Therefore, U71Mn rail steel and the corresponding thermite weld are recommended in railway construction and maintenance in cold regions.展开更多
La2Zr2O7 (LZ) is a promising thermal barrier coating material for the high temperature applications. The fracture toughness and microhardness of nanocrystalline LZ (n-LZ), microcrystalline LZ (m-LZ) and LZ-5mol%...La2Zr2O7 (LZ) is a promising thermal barrier coating material for the high temperature applications. The fracture toughness and microhardness of nanocrystalline LZ (n-LZ), microcrystalline LZ (m-LZ) and LZ-5mol%8YSZ (LZ-5-8YSZ) composite (8YSZ for zirconia stabilized by 8 mol% ytrria) were studied. The n-LZ had a thermal expansion coefficient of (9.6±0.4)×10 -6 K -1 (200~1000℃) and fracture toughness of (1.98±0.07) MPa·m 1/2 which are obviously higher than those of the m-LZ ( (9.1±0.4)×10 -6 K -1 and (1.40±0.23) MPa·m 1/2, respectively), indicating that nanofication was an efficient way to increase the toughness and thermal expansion coefficient of LZ. The composite LZ-5-8YSZ had a higher fracture toughness ((1.88±0.30) MPa·m 1/2) than LZ, which was close to that of 8YSZ densified by superhigh pressure (SHP).展开更多
The dynamic fracture toughness of TA15ELI alloy with two types of microstructures was studied by instrumented impact test.Charpy specimens with both the 0.2 mm U-notch and the a/W = 0.2 pre-crack were adopted to compa...The dynamic fracture toughness of TA15ELI alloy with two types of microstructures was studied by instrumented impact test.Charpy specimens with both the 0.2 mm U-notch and the a/W = 0.2 pre-crack were adopted to compare notch sensitivity in the two microstructures.The result shows that the specimen with Widmanst?tten microstructure exhibits a better dynamic fracture toughness and lower notch sensitivity than that with lath-like microstructure.Fracture surfaces in the case of the two microstructures are analyzed to have a ductile and brittle mixed feature under dynamic loading.The fracture surface of lath-like microstructure is composed of dimples and tear ridges,while that of Widmanst?tten microstructure is covered with rough block-like facets and dimples and tear ridges.The α phase boundaries and α/β interfaces act as locations for void nucleation and crack arrest and deviation.The decrease in width of α phase lamellae leads to the increase in the amount of boundaries and interfaces,which causes the increase in the consumption of impact energy and results in the improvement in dynamic fracture toughness.展开更多
The fracture toughness of hard biomaterials, such as nacre, bovine hoof wall and beetle cuticle, is associated with fibrous or lamellar structures that deflect or stop growing cracks. Their hardness and reduced modulu...The fracture toughness of hard biomaterials, such as nacre, bovine hoof wall and beetle cuticle, is associated with fibrous or lamellar structures that deflect or stop growing cracks. Their hardness and reduced modulus were measured by using a nanoindenter in this paper. Micro/nanoscale cracks were generated by nanoindentation using a Berkovich tip. Nanoindentation of nacre and bovine hoof wall resulted in pile-up around the indent. It was found that the fracture toughness (Kc) of bovine hoof wall is the maximum, the second is nacre, and the elytra cuticle of dung beetle is the least one.展开更多
The effects of two-stage aging and retrogression and reaging heat treatment on the fracture toughness and stress corrosion cracking resistance of 7475 alloy were studied. The fracture toughness, conductivity and stren...The effects of two-stage aging and retrogression and reaging heat treatment on the fracture toughness and stress corrosion cracking resistance of 7475 alloy were studied. The fracture toughness, conductivity and strength of samples of nine groups under duplex aging conditions and three retrogression and reaging heat treatments were also measured. Incorporating the microstructure and property, we found that when the condition of the first order aging kept identical, the fracture toughness and stress corrosion cracking resistance increase with aging time and the second aging temperature. The optimal treatment conditions are ( 115℃×7h + 185 ℃×13h) among all tested two-stage aging treatments. Although the 7475 alloy treated by RRA method shows the highest strength and its stress corrosion cracking resistance after twenty minutes retrogression can also reach the same level as those by the optimal treatment of (115℃×7h+ 185℃×13h ), the fracture toughness is even low.展开更多
文摘For the effect of thermal treatment on the mode-I fracture toughness(FT), three crystalline rocks(two basalts and one tonalite) were experimentally investigated. Semi-circular bend specimens of the rocks were prepared following the method suggested by the International Society for Rock Mechanics(ISRM)and were treated at various temperatures ranging from room temperature(25 ℃) to 600 ℃. Mode-I FT was correlated with tensile strength(TS), ultrasonic velocities, and Young’s modulus(YM). Additionally,petrographic and X-ray diffraction analyses were carried out to find the chemical changes resulting from the heat treatment. Further, scanning electron microscopy(SEM) was conducted to observe the micro structural changes when subjected to high temperatures. These experiments demonstrate that heat treatment has a strong negative impact on the FT and mechanical properties of the rocks. From room temperature to 600 ℃, mode-I FT values of massive basalt, giant plagioclase basalt, and tonalite were reduced by nearly 52%, 68%, and 64%, respectively. Also, at all temperature levels, FT and mechanical properties are found to be exponentially correlated. However, the exact nature of the relationship mainly depends on rock type. Besides, TS was found to be a better indicator of degradation degree than the mode-I FT. SEM images show that micro crack density and structural disintegration of the mineral grains increase with temperature. These physical changes confirm the observed reduction in the stiffness of heat-treated crystalline rocks.
基金supported by National Natural Science Foundation of China(Grant Nos.52364004,52264006,and 52164001).
文摘The fracture toughness of rocks is a critical fracturing parameter in geo-energy exploitation playing a significant role in fracture mechanics and hydraulic fracturing.The edge-notched disk bending(ENDB)specimens are employed to measure the entire range of mixed-modeⅠ/Ⅲfracture toughness of Longmaxi shale.To theoretically interpret the fracture mechanisms,this research first introduces the detailed derivations of three established fracture criteria.By distinguishing the volumetric and distortional strain energy densities,an improved three-dimensional mean strain energy density(MSED)criterion is proposed.As the critical volumetric to distortional MSED ratio decreases,the transition from tensiondominated fracture to shear-dominated fracture is observed.Our results indicate that both peak load and applied energy increase significantly with the transition from pure mode I(i.e.,tension)to pure modeⅢ(i.e.,torsion or tearing)since mode-Ⅲcracking happens in a twisted manner and mode-Ⅰcracking occurs in a coplanar manner.The macroscopic fracture signatures are consistent with those of triaxial hydraulic fracturing.The average ratio of pure mode-Ⅲfracture toughness to pure mode-Ⅰfracture toughness is 0.68,indicating that the obtained mode-Ⅲfracture resistance for a tensionbased loading system is apparent rather than true.Compared to the three mainstream fracture criteria,the present fracture criterion exhibits greater competitiveness and can successfully evaluate and predict mixed-modeⅠ/Ⅲfracture toughness of distinct materials and loading methods.
基金supported by the JST CREST for Research Area“Nanomechanics”[JPMJCR2094]the JSPS KAKENHI for Scientific Research B[JP21H01673]the AMADA Foundation[AF-2023044-C2].
文摘The fracture toughness of extruded Mg-1Zn-2Y(at.%)alloys,featuring a multimodal microstructure containing fine dynamically recrystallized(DRXed)grains with random crystallographic orientation and coarse-worked grains with a strong fiber texture,was investigated.The DRXed grains comprised randomly oriented equiaxedα-Mg grains.In contrast,the worked grains includedα-Mg and long-period stacking ordered(LPSO)phases that extended in the extrusion direction(ED).Both types displayed a strong texture,aligning the10.10direction parallel to the ED.The volume fractions of the DRXed and worked grains were controlled by adjusting the extrusion temperature.In the longitudinal-transverse(L-T)orientation,where the loading direction was aligned parallel to the ED,there was a tendency for the conditional fracture toughness,KQ,tended to increase as the volume fraction of the worked grains increased.However,the KQ values in the T-L orientation,where the loading direction was perpendicular to the ED,decreased with an increase in the volume fraction of the worked grains.This suggests strong anisotropy in the fracture toughness of the specimen with a high volume fraction of the worked grains,relative to the test direction.The worked grains,which included the LPSO phase and were elongated perpendicular to the initial crack plane,suppressed the straight crack extension,causing crack deflection,and generating secondary cracks.Thus,these worked grains significantly contributed to the fracture toughness of the extruded Mg-1Zn-2Y alloys in the L-T orientation.
基金financially supported by the National Natural Science Foundation of China (Nos. 51874037 and 51922004)the Beijing Natural Science Foundation (No. 2212035)+1 种基金the Fundamental Research Funds for the Central Universities (No. FRF-TP-19005C1Z)the National Defense Basic Research Project (No. JCKY2017213004)。
文摘Powder hot isostatic pressing(HIP) is an effective method to achieve near-net-shape manufacturing of high-quality complex thinwalled titanium alloy parts, and it has received extensive attention in recent years. However, there are few reports about the microstructure characteristics on the strengthening and toughening mechanisms of powder hot isostatic pressed(HIPed) titanium alloys. Therefore, TA15powder was prepared into alloy by HIP approach, which was used to explore the microstructure characteristics at different HIP temperatures and the corresponding tensile properties and fracture toughness. Results show that the fabricated alloy has a “basket-like structure” when the HIP temperature is below 950℃, consisting of lath clusters and surrounding small equiaxed grains belts. When the HIP temperature is higher than 950℃, the microstructure gradually transforms into the Widmanstatten structure, accompanied by a significant increase in grain size. The tensile strength and elongation are reduced from 948 MPa and 17.3% for the 910℃ specimen to 861 MPa and 10% for the 970℃ specimen.The corresponding tensile fracture mode changes from transcrystalline plastic fracture to mixed fracture including intercrystalline cleavage.The fracture toughness of the specimens increases from 82.64 MPa·m^(1/2)for the 910℃ specimen to 140.18 MPa·m^(1/2)for the 970℃ specimen.Specimens below 950℃ tend to form holes due to the prior particle boundaries(PPBs), which is not conducive to toughening. Specimens above 950℃ have high fracture toughness due to the crack deflection, crack branching, and shear plastic deformation of the Widmanstatten structure. This study provides a valid reference for the development of powder HIPed titanium alloy.
文摘This study investigates the tensile failure mechanisms in granitic rock samples at different scales by means of different types of tests.To do that,we have selected a granitic rock type and obtained samples of different sizes with the diameter ranging from 30 mm to 84 mm.The samples have been subjected to direct tensile strength(DTS)tests,indirect Brazilian tensile strength(BTS)tests and to two fracture toughness testing approaches.Whereas DTS and fracture toughness were found to consistently grow with sample size,this trend was not clearly identified for BTS,where after an initial grow,a plateau of results was observed.This is a rather complete database of tensile related properties of a single rock type.Even if similar databases are rare,the obtained trends are generally consistent with previous scatter and partial experimental programs.However,different observations apply to different types of rocks and experimental approaches.The differences in variability and mean values of the measured parameters at different scales are critically analysed based on the heterogeneity,granular structure and fracture mechanics approaches.Some potential relations between parameters are revised and an indication is given on potential sample sizes for obtaining reliable results.Extending this database with different types of rocks is thought to be convenient to advance towards a better understanding of the tensile strength of rock materials.
文摘In this context,four specimens,i.e.(i)circumferentially notched cylindrical torsion(CNCT),(ii)circum-ferentially notched cylindrical direct tension(CNCDT),(iii)edge notch disc bend(ENDB)and(iv)three-point bend beam(3PBB),were utilized to measure the modesⅠandⅢfracture toughness values of gypsum.While the CNCT specimen provides pure modeⅢloading in a direct manner,this pure mode condition is indirectly produced by the ENDB specimen.The ENDB specimen provided lower KⅢc and a non-coplanar(i.e.twisted)fracture surface compared with the CNCT specimen,which showed a planar modeⅢfracture surface.The ENDB specimen is also employed for conducting pure modeⅠ(with different crack depths)and mixed modeⅠ/Ⅲtests.KIc value was independent of the notch depth,and it was consistent with the RILEM and ASTM standard methods.But the modeⅢfracture results were highly sensitive to the notch depth.While the fracture resistance against modeⅢwas significantly lower than that of modeⅠ,the greater work of fracture under modeⅢwas noticeable.
基金Supported by National Natural Science Foundation of China(Grant No.52275154)National Key Research and Development Project of China(Grant No.2016YFF0203005).
文摘To address the problem of conventional approaches for mechanical property determination requiring destructive sampling, which may be unsuitable for in-service structures, the authors proposed a method for determining the quasi-static fracture toughness and impact absorbed energy of ductile metals from spherical indentation tests (SITs). The stress status and damage mechanism of SIT, mode I fracture, Charpy impact tests, and related tests were frst investigated through fnite element (FE) calculations and scanning electron microscopy (SEM) observations, respectively. It was found that the damage mechanism of SITs is diferent from that of mode I fractures, while mode I fractures and Charpy impact tests share the same damage mechanism. Considering the diference between SIT and mode I fractures, uniaxial tension and pure shear were introduced to correlate SIT with mode I fractures. Based on this, the widely used critical indentation energy (CIE) model for fracture toughness determination using SITs was modifed. The quasi-static fracture toughness determined from the modifed CIE model was used to evaluate the impact absorbed energy using the dynamic fracture toughness and energy for crack initiation. The efectiveness of the newly proposed method was verifed through experiments on four types of steels: Q345R, SA508-3, 18MnMoNbR, and S30408.
基金financially supported by the Natural Science Foundation of Liaoning Province,China (No.2022-MS-113)the Major technology projects of Liaoning Province,China (No.2019JH1/10100004)+1 种基金the National Natural Science Foundation of China (No.52271249)the Key Research and Development Program of Shaanxi,China(No.2023-YBGY-488)。
文摘The role of α precipitates formed during aging in the fracture toughness and fracture behavior of β-type bio-titanium alloy Ti–29Nb–13Ta–4.6Zr(TNTZ) was studied. Results showed that the fracture toughness of the TNTZ alloy aged at 723 K decreases to the minimum of 72.07–73.19 kJ·m^(-2)when the aging time is extended to 4–8 h and then gradually increases and reaches 144.89 kJ·m^(-2)after 72 h. The decrease in fracture toughness within the aging time of 4–8 h is caused by the large stress concentration at the tip of acicular α precipitates with a high aspect ratio and the preferential crack propagation along the inhomogeneous acicular α precipitates distributed in “V-shape” and “nearly perpendicular shape”. When the aging time is extended to 8–72 h, the precrack tip is uniformly blunted, and the crack is effectively deflected by α precipitates with multi long axis directions, more high homogeneity, low aspect ratio, and large number density. Analysis of the effect of αprecipitates on the fracture behavior suggested that the number of long axis directions of α precipitates is the key controlling factor for the fracture behavior and fracture toughness of the TNTZ alloy aged for different times.
基金Project supported by the National Natural Science Foundation of China(Nos.12172048 and 12027901)the National Science and Technology Major Project of China(Nos.2019-Ⅶ-0007-0147 and 2017-Ⅵ-0020-0093)。
文摘The surface fracture toughness is an important mechanical parameter for studying the failure behavior of air plasma sprayed(APS)thermal barrier coatings(TBCs).As APS TBCs are typical multilayer porous ceramic materials,the direct applications of the traditional single edge notched beam(SENB)method that ignores those typical structural characters may cause errors.To measure the surface fracture toughness more accurately,the effects of multilayer and porous characters on the fracture toughness of APS TBCs should be considered.In this paper,a modified single edge V-notched beam(MSEVNB)method with typical structural characters is developed.According to the finite element analysis(FEA),the geometry factor of the multilayer structure is recalculated.Owing to the narrower V-notches,a more accurate critical fracture stress is obtained.Based on the Griffith energy balance,the reduction of the crack surface caused by micro-defects is corrected.The MSEVNB method can measure the surface fracture toughness more accurately than the SENB method.
基金Projects(2010CB731701,2012CB619502)supported by the National Basic Research Program of ChinaProjects(51201186,51327902)supported by the National Natural Science Foundation of China
文摘The influences of heat treatment on stress corrosion cracking (SCC), fracture toughness and strength of 7085 aluminum alloy were investigated by slow strain rate testing, Kahn tear testing combined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the fracture toughness of T74 overaging is increased by 22.9% at the expense of 13.6% strength, and retrogression and reaging (RRA) enhances fracture toughness 14.2% without reducing the strength compared with T6 temper. The fracture toughness of dual-retrogression and reaging (DRRA) is equivalent to that of T74 with an increased strength of 14.6%. The SCC resistance increases in the order: T6〈RRA〈DRRA≈T74. The differences of fracture toughness and SCC were explained on the basis of the role of matrix precipitates and grain boundary orecioitates.
基金Project (2011CB605505) supported by the National Basic Research Program of ChinaProject (2008AA03A233) supported by the Hi-tech Research and Development Program of China
文摘A TiAl-Nb composite was prepared by spark plasma sintering (SPS) at 1250 °C and 50 MPa for 5 min from prealloyed TiAl powder and elemental Nb powder in a molar ratio of 9:1 for improving the fracture toughness of TiAl alloy at room temperature. The microstructure, phase constitute, fracture surface and fracture toughness were determined by X-ray diffractometry, electron probe micro-analysis, scanning and transmission electron microscopy and mechanical testing. The results show that the sintered samples mainly consist of γ phase, O phase, niobium solid solution (Nbss) phase and B2 phase. The fracture toughness is as high as 28.7 MPa?m1/2 at room temperature. The ductile Nbss phase plays an important role in absorbing the fracture energy in front of the cracks. Moreover, B2 phase can branch the propagation of the cracks. The microhardness of each phase of the composite was also tested.
基金We acknowledge the funding support from the National Natural Science Foundation of China(Grant No.42271148).
文摘Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors of frozen rock is evaluated by testing the tension fracture toughness(KIC)of frozen rock at different temperatures(i.e.-20℃,-15℃,-12℃,-10℃,-8℃,-6℃,-4℃,-2℃,and 0℃).Acoustic emission(AE)and digital image correlation(DIC)methods are utilized to analyze the microcrack propagation during fracturing.The melting of pore ice is measured using nuclear magnetic resonance(NMR)method.The results indicate that:(1)The KIC of frozen rock decreases moderately between-20℃ and-4℃,and rapidly between-4℃ and 0℃.(2)At-20℃ to-4℃,the fracturing process,deduced from the DIC results at the notch tip,exhibits three stages:elastic deformation,microcrack propagation and microcrack coalescence.However,at-4℃e0℃,only the latter two stages are observed.(3)At-4℃e0℃,the AE activities during fracturing are less than that at-20℃ to-4℃,while more small events are reported.(4)The NMR results demonstrate a reverse variation trend in pore ice content with increasing temperature,that is,a moderate decrease is followed by a sharp decrease and-4℃ is exactly the critical temperature.Next,we interpret the thawing-induced softening effect by linking the evolution in microscopic structure of frozen rock with its macroscopic fracture behaviors as follow:from-20℃ to-4℃,the thickening of the unfrozen water film diminishes the cementation strength between ice and rock skeleton,leading to the decrease in fracture parameters.From-4℃ to 0℃,the cementation effect of ice almost vanishes,and the filling effect of pore ice is reduced significantly,which facilitates microcrack propagation and thus the easier fracture of frozen rocks.
文摘Based on the conventional compliance and area methods, a high precision method named the angle method is presented in this work. The interlaminar fracture toughness is determined by measurement of the load and the bending angle at the loading point without measurement of the crack length, and the improvement of the conventional compliance method is made, which is more precise and can be used to general DCB specimen with unequal flexural stiffness of the cantilevers. The interlaminar fracture toughness in 0/ θ(θ =0°,30°,60°,90°) interfaces of two epoxy composites, one being the carbon fibre reinforced brittle matrix T300/4211, the other the carbon fibre reinforced tough matrix T300/3261, is measured by both compliance and angle methods, and the relationship between fracture toughness and the ply angle θ is obtained. It is found that the interlaminar fracture toughness is correlated with the type of matrix and the ply angles near the crack front.
基金the National Natural Science Foundation of China(Grant No.51878590)the Jiangsu Provincial Department of Housing and Construction(Grant Nos.2019ZD092,2020ZD40,2020ZD42)the Sixth Phase of“333 Project”Training Objects in Jiangsu Province and Jiangsu Province High-Level Talent Selection Training(Grant No.JNHB-127)for their financial support.
文摘Fracture is a common failure form of poplar laminated veneer lumber(LVL).In the present work,we performed an experimental study on the mode-I along-grain interlaminar fracture,mode-I cross-grain interlaminar fracture,and mode-II interlaminar fracture of poplar LVL.We investigated stress mechanisms,failure modes,and fracture toughness values of the different fracture types.The experimental results revealed that the crack in the mode-I along-grain interlaminar fracture specimen propagated along the prefabricated crack direction,and the crack tip broke.The mode-I cross-grain interlaminar fracture specimen had cracks in the vertical direction near the prefabricated crack.In the mode-II interlaminar fracture specimen,cracks appeared along the initial prefabricated crack direction.The load–displacement curves of these three specimens were linear in the early stage of loading.With the increase in the load,a nonlinear segment appeared before crack propagation and a descending segment appeared after crack propagation.The nonlinear segments of the mode-I along-grain interlaminar fracture and mode-II interlaminar fracture were very short,and cracks expanded quickly after their initiation,resulting in brit-tle fracture.The nonlinear segment of the mode-I cross-grain interlaminar fracture was long,resulting in plastic failure.The average toughness values of the mode-I along-grain interlaminar fracture,mode-I cross-grain inter-laminar fracture,and mode-II interlaminar fracture were 15.43,270.15,and 39.72 MPa·mm^(1/2),respectively.
文摘In order to investigate the fracture toughness, crack tip opening displacement (CTOD) experiments were conducted on two X70 pipeline steel plates with different rolling processes. Atter the experiments, optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to observe the microstructure and fracture morphology. The effects of precipi- tates on the fracture toughness and the crack initiation mechanism induced by inclusions were analyzed. The CTOD result shows that the steel with a lower finishing cooling temperature has a higher fracture toughness. Inchisiom with different shapes and two kinds of precipi- tates with different sizes were observed. It can be concluded that precipitates with different sizes have different effects and mechanisms on the fracture toughness. Distinguished fi'om the earlier researches, inclusions enriched in silicon can be also served as the crack initiation.
基金supported by the Research Foundation of the Ministry of Railways and Tsinghua University (No.T200410)the National Natural Science Foundation of China (Nos.50778102 and 51178244)
文摘Brittle fracture occurs frequently in rails and thermite welded joints, which intimidates the security and reliability of railway ser- vice. Railways in cold regions, such as Qinghai-Tibet Railway, make the problem of brittle fi'acture in rails even worse. A series of tests such as uniaxial tensile tests, Charpy impact tests, and three-point bending tests were carried out at low temperature to investigate the mechanical properties and fracture toughness of U71Mn and U75V rail steels and their thermite welds. Fracture micromechanisms were analyzed by scanning electron microscopy (SEM) on the fracture surfaces of the tested specimens. The ductility indices (percentage elongation aider frac- ture and percentage reduction of area) and the toughness indices (Charpy impact energy Ak and plane-strain fracture toughness Kic) of the two kinds of rail steels and the corresponding thermite welds all decrease as the temperature decreases. The thermite welds are more critical to fracture than the rail steel base metals, as indicated by a higher yield-to-ultimate ratio and a much lower Charpy impact energy. U71Mn rail steel is relatively higher in toughness than U75V, as demonstrated by larger Ak and Klc values. Therefore, U71Mn rail steel and the corresponding thermite weld are recommended in railway construction and maintenance in cold regions.
文摘La2Zr2O7 (LZ) is a promising thermal barrier coating material for the high temperature applications. The fracture toughness and microhardness of nanocrystalline LZ (n-LZ), microcrystalline LZ (m-LZ) and LZ-5mol%8YSZ (LZ-5-8YSZ) composite (8YSZ for zirconia stabilized by 8 mol% ytrria) were studied. The n-LZ had a thermal expansion coefficient of (9.6±0.4)×10 -6 K -1 (200~1000℃) and fracture toughness of (1.98±0.07) MPa·m 1/2 which are obviously higher than those of the m-LZ ( (9.1±0.4)×10 -6 K -1 and (1.40±0.23) MPa·m 1/2, respectively), indicating that nanofication was an efficient way to increase the toughness and thermal expansion coefficient of LZ. The composite LZ-5-8YSZ had a higher fracture toughness ((1.88±0.30) MPa·m 1/2) than LZ, which was close to that of 8YSZ densified by superhigh pressure (SHP).
文摘The dynamic fracture toughness of TA15ELI alloy with two types of microstructures was studied by instrumented impact test.Charpy specimens with both the 0.2 mm U-notch and the a/W = 0.2 pre-crack were adopted to compare notch sensitivity in the two microstructures.The result shows that the specimen with Widmanst?tten microstructure exhibits a better dynamic fracture toughness and lower notch sensitivity than that with lath-like microstructure.Fracture surfaces in the case of the two microstructures are analyzed to have a ductile and brittle mixed feature under dynamic loading.The fracture surface of lath-like microstructure is composed of dimples and tear ridges,while that of Widmanst?tten microstructure is covered with rough block-like facets and dimples and tear ridges.The α phase boundaries and α/β interfaces act as locations for void nucleation and crack arrest and deviation.The decrease in width of α phase lamellae leads to the increase in the amount of boundaries and interfaces,which causes the increase in the consumption of impact energy and results in the improvement in dynamic fracture toughness.
基金This work was supported by National Natural Science Foundation of China (grant no.30600131, 50675087);by National Science Fund for Distinguished Young Scholars of China (grant no. 50025516);by Special Research Fund for the Doctoral Program of High Education of China (grant no. 20060183067) ;by "Project 985" of Jilin University.
文摘The fracture toughness of hard biomaterials, such as nacre, bovine hoof wall and beetle cuticle, is associated with fibrous or lamellar structures that deflect or stop growing cracks. Their hardness and reduced modulus were measured by using a nanoindenter in this paper. Micro/nanoscale cracks were generated by nanoindentation using a Berkovich tip. Nanoindentation of nacre and bovine hoof wall resulted in pile-up around the indent. It was found that the fracture toughness (Kc) of bovine hoof wall is the maximum, the second is nacre, and the elytra cuticle of dung beetle is the least one.
文摘The effects of two-stage aging and retrogression and reaging heat treatment on the fracture toughness and stress corrosion cracking resistance of 7475 alloy were studied. The fracture toughness, conductivity and strength of samples of nine groups under duplex aging conditions and three retrogression and reaging heat treatments were also measured. Incorporating the microstructure and property, we found that when the condition of the first order aging kept identical, the fracture toughness and stress corrosion cracking resistance increase with aging time and the second aging temperature. The optimal treatment conditions are ( 115℃×7h + 185 ℃×13h) among all tested two-stage aging treatments. Although the 7475 alloy treated by RRA method shows the highest strength and its stress corrosion cracking resistance after twenty minutes retrogression can also reach the same level as those by the optimal treatment of (115℃×7h+ 185℃×13h ), the fracture toughness is even low.