To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general...To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general hyperbolic creep model was first introduced to describe the long-term deformation of geosynthetics,which is a function of elapsed time and two empirical parameters a and b.The conventional creep tests with three different tensile loads(Pr)were conducted on two uniaxial geogrids to determine their creep behavior,as well as the a-Pr and b-Pr relationships.The test results show that increasing Pr accelerates the development of creep deformation for both geogrids.Meanwhile,a and b respectively show exponential and negatively linear relationships with Pr,which were confirmed by abundant experimental data available in other studies.Based on the above creep model and relationships,an accurate and reliable analytical model was then proposed for predicting the time-dependent d of GRS walls with modular block facing,which was further validated using a relevant numerical investigation from the previous literature.Performance evaluation and comparison of the proposed model with six available prediction models were performed.Then a parametric study was carried out to evaluate the effects of wall height,vertical spacing of geogrids,unit weight and internal friction angle of backfills,and factor of safety against pullout on d at the end of construction and 5 years afterwards.The findings show that the creep effect not only promotes d but also raises the elevation of the maximum d along the wall height.Finally,the limitations and application prospects of the proposed model were discussed and analyzed.展开更多
Departing from an analytical phase transformation model, a new analytical approach to deduce transformed fraction for non-isothermal phase transformation was developed. In the new approach, the effect of the initial t...Departing from an analytical phase transformation model, a new analytical approach to deduce transformed fraction for non-isothermal phase transformation was developed. In the new approach, the effect of the initial transformation temperature and the accurate "temperature integral" approximations are incorporated to obtain an extended analytical model. Numerical approach demonstrated that the extended analytical model prediction for transformed fraction and transformation rate is in good agreement with the exact numerical calculation. The new model can describe more precisely the kinetic behavior than the original analytical model, especially for transformation with relatively high initial transformation temperature. The kinetic parameters obtained from the new model are more accurate and reasonable than those from the original analytical model.展开更多
Based on the 65nm CMOS process,a novel parallel RLC coupling interconnect analytical model is presented synthetically considering parasitical capacitive and parasitical inductive effects. Applying function approximati...Based on the 65nm CMOS process,a novel parallel RLC coupling interconnect analytical model is presented synthetically considering parasitical capacitive and parasitical inductive effects. Applying function approximation and model order-reduction to the model, we derive a closed-form and time-domain waveform for the far-end crosstalk of a victim line under ramp input transition. For various interconnect coupling sizes, the proposed RLC coupling analytical model enables the estimation of the crosstalk voltage within 2.50% error compared with Hspice simulation in a 65nm CMOS process. This model can be used in computer-aided-design of nanometer SOCs.展开更多
Due to interaction among cells, it is too complex to build an exactanalytical model for the power dissipation within the cell membrane in suspensions exposed toexternal fields. An approximate equivalence method is pro...Due to interaction among cells, it is too complex to build an exactanalytical model for the power dissipation within the cell membrane in suspensions exposed toexternal fields. An approximate equivalence method is proposed to resolve this problem. Based on theeffective medium theory, the transmembrane voltage on cells in suspensions was investigated by theequivalence principle. Then the electric field in the cell membrane was determined. Finally,analytical solutions for the power dissipation within the cell membrane in suspensions exposed toexternal fields were derived according to the Joule principle. The equations show that theconductive power dissipation is predominant within the cell membrane in suspensions exposed todirect current or lower frequencies, and dielectric power dissipation prevails at high frequenciesexceeding the relaxation frequency of the exposed membrane.展开更多
An analytical model of electron mobility for strained-silicon channel nMOSFETs is proposed in this paper. The model deals directly with the strain tensor,and thus is independent of the manufacturing process. It is sui...An analytical model of electron mobility for strained-silicon channel nMOSFETs is proposed in this paper. The model deals directly with the strain tensor,and thus is independent of the manufacturing process. It is suitable for (100〉/ 〈110) channel nMOSFETs under biaxial or (100〉/〈 110 ) uniaxial stress and can be implemented in conventional device simulation tools .展开更多
The analytical model for springback in arc bending of sheet metal can serve as an excellent design support.The amount of springback is considerably influenced by the geometrical and the material parameters associated ...The analytical model for springback in arc bending of sheet metal can serve as an excellent design support.The amount of springback is considerably influenced by the geometrical and the material parameters associated with the sheet metal.In addition,the applied load during the bending also has a significant influence.Although a number of numerical techniques have been used for this purpose,only few analytical models that can provide insight into the phenomenon are available.A phenomenological model for predicting the springback in arc bending was proposed based on strain as well as deformation energy based approaches.The results of the analytical model were compared with the published experimental as well as FE results of the authors,and the agreement was found to be satisfactory.展开更多
A multiphysics model for a production scale planar solid oxide fuel cell (SOFC) stack is important for the SOFC technology, but usually requires an unpractical amount of computing resource. The major cause for the h...A multiphysics model for a production scale planar solid oxide fuel cell (SOFC) stack is important for the SOFC technology, but usually requires an unpractical amount of computing resource. The major cause for the huge computing resource requirement is identified as the need to solve the cathode O2 transport and the associated electrochemistry. To overcome the technical obstacle, an analytical model for solving the O2 transport and its coupling with the electrochemistry is derived. The analytical model is used to greatly reduce the numerical mesh complexity of a multiphysics model. Numerical test shows that the analytical approximation is highly accurate and stable. A multiphysics numerical modeling tool taking advantage of the analytical solution is then developed through Fluent@. The numerical efficiency and stability of this modeling tool are further demonstrated by simulating a 30- cell stack with a production scale cell size. Detailed information about the stack performance is revealed and briefly discussed. The multiphysics modeling tool can be used to guide the stack design and select the operating parameters.展开更多
The environmental risks associated with casing deformation in unconventional(shale)gas wells positioned in abutment pillars of longwall mines is a concern to many in the mining and gas well industry.With the recent in...The environmental risks associated with casing deformation in unconventional(shale)gas wells positioned in abutment pillars of longwall mines is a concern to many in the mining and gas well industry.With the recent interest in shale exploration and the proximity to longwall mining in Southwestern Pennsylvania,the risk to mine workers could be catastrophic as fractures in surrounding strata create pathways for transport of leaked gases.Hence,this research by the National Institute for Occupational Safety and Health(NIOSH)presents an analytical model of the gas transport through fractures in a low permeable stratum.The derived equations are used to conduct parametric studies of specific transport conditions to understand the influence of stratum geology,fracture lengths,and the leaked gas properties on subsurface transport.The results indicated that the prediction that the subsurface gas flux decreases with an increase in fracture length is specifically for a non-gassy stratum.The sub-transport trend could be significantly impacted by the stratum gas generation rate within specific fracture lengths,which emphasized the importance of the stratum geology.These findings provide new insights for improved understanding of subsurface gas transport to ensure mine safety.展开更多
According to the physiological and anatomical characteristics of small intestine,neglecting the effect of its motility on the distribution and absorption of drug and nutrient,Y.Miyamoto et al.proposed a model of two-d...According to the physiological and anatomical characteristics of small intestine,neglecting the effect of its motility on the distribution and absorption of drug and nutrient,Y.Miyamoto et al.proposed a model of two-dimensional laminar flow in a circular porous tube with permeable wall and calculated the concentration profile of drugby numerical analysis.In this paper,we give a steady-state analytical solution of the above model including deactivationterm.The obtained results are in agreement with the results of their numerical analysis. Moreover the analytical solution presented in this paper reveals the relation among the physiological parameters of the model and describes the basic absorption rule of drug and nutrient through the intestinal wall and hence pro- vides a theoretical basis for determining the permeability and reflection coefficient through in situ experiments.展开更多
According to the characteristics of thin-layer rolling and pouting construction technology and the complicated mechanical behavior of the roller compacted concrete dam (RCCD) construction interface, a constitutive m...According to the characteristics of thin-layer rolling and pouting construction technology and the complicated mechanical behavior of the roller compacted concrete dam (RCCD) construction interface, a constitutive model of endochronic damage was established based on the endochronic theory and damage mechanics. The proposed model abandons the traditional concept of elastic-plastic yield surface and can better reflect the real behavior of rolled control concrete. Basic equations were proposed for the fluid-solid coupling analysis, and the relationships among the corresponding key physical parameters were also put forward. One three-dimensional finite element method (FEM) program was obtained by studying the FEM type of the seepage-stress coupling intersection of the RCCD. The method was applied to an actual project, and the results show that the fluid-solid interaction influences dam deformation and dam abutment stability, which is in accordance with practice. Therefore, this model provides a new method for revealing the mechanical behavior of RCCD under the coupling field.展开更多
Based on the fundamental equations of the mechanics of solid continuum, the paper employs an analytical model for determination of elastic thermal stresses in isotropic continuum represented by periodically distribute...Based on the fundamental equations of the mechanics of solid continuum, the paper employs an analytical model for determination of elastic thermal stresses in isotropic continuum represented by periodically distributed spherical particles with different distributions in an infinite matrix, imaginarily divided into identical cells with dimensions equal to inter-particle distances, containing a central spherical particle with or without a spherical envelope on the particle surface. Consequently, the multi-particle-(envelope)- matrix system, as a model system regarding the analytical modelling, is applicable to four types of multi-phase materials. As functions of the particle volume fraction v, the inter-particle distances dl, d2, d3 along three mutually per- pendicular axes, and the particle and envelope radii, R1 and R2, respectively, the thermal stresses within the cell, are originated during a cooling process as a consequence of the difference in thermal expansion coefficients of phases rep- resented by the matrix, envelope and particle. Analytical-(experimental)-computational lifetime prediction methods for multi-phase materials are proposed, which can be used in engineering with appropriate values of parameters of real multi-phase materials.展开更多
Based on the quasi-two-dimensional (2D) solution of Poisson's equation in two continuous channel regions, an an- alytical threshold voltage model for short-channel junctionless dual-material cylindrical surrounding...Based on the quasi-two-dimensional (2D) solution of Poisson's equation in two continuous channel regions, an an- alytical threshold voltage model for short-channel junctionless dual-material cylindrical surrounding-gate (JLDMCSG) metal-oxide-semiconductor field-effect transistor (MOSFET) is developed. Using the derived model, channel potential dis- tribu6o~, h~riz~atal electrical ~eld distributign, a~d threshold v~ltage roll-off of ~LDMCSG MOSFET are in,instigated. Compared with junctionless single-material CSG (JLSGCSG) MOSFET~ JLDMCSG MOSFET can effectively suppress short-channel effects and simultaneously improve carrier transport efficiency. It is also revealed that threshold voltage roll- off of JLDMCSG can be significantly reduced by adopting both a small oxide thickness and a small silicon channel radius. The model is verified by comparing its calculated results with that obtained from three-dimensional (3D) numerical device simulator ISE.展开更多
A simple but applicable analytical model is presented to predict the lat- eral distribution of the depth-averaged velocity in meandering compound channels. The governing equation with curvilinear coordinates is derive...A simple but applicable analytical model is presented to predict the lat- eral distribution of the depth-averaged velocity in meandering compound channels. The governing equation with curvilinear coordinates is derived from the momentum equation and the flow continuity equation under the condition of quasi-uniform flow. A series of experiments are conducted in a large-scale meandering compound channel. Based on the experimental data, a magnitude analysis is carried out for the governing equation, and two lower-order shear stress terms are ignored. Four groups of experimental data from different sources are used to verify the predictive capability of this model, and good predictions are obtained. Finally, the determination of the velocity parameter and the limitation of this model are discussed.展开更多
Automotive suspension control arm is used to join the steering knuckle to the vehicle frame. Its main function is to provide stability under fatigue stresses of loading and unloading in accelerating and braking. Conve...Automotive suspension control arm is used to join the steering knuckle to the vehicle frame. Its main function is to provide stability under fatigue stresses of loading and unloading in accelerating and braking. Conventionally, these parts were made of steel; however, fuel consumption and emission of polluting gases are strongly dependent on car weight. Recently, there is a try to develop and design much lighter and better fatigue resistant metal of semisolid A357 aluminum alloys. This work aims at a better understanding of identifying the fatigue strain-hardening parameters used for determining fatigue characteristics of aluminum suspension control arm using analytical and mathematical modeling. The most judicious method is to perform the fatigue tests on standardized test pieces and then plot two Wohler curves, mainly number of cycles as a function of the stress and as a function of the deformation. From these curves and following a certain mathematical and analytical methods, certain curves are plotted and then all of these coefficients are drawn. The new calculated parameters showed a clear improvement of the fatigue curve towards the experimental curve performed on the samples of aluminum alloy A357 compared with the same analytical curve for the same alloy.展开更多
Intra-body communication (IBC) is a new,emerging,short-range and human body based communication methodology.It is a technique to network various devices on human body,by utilizing the conducting properties of human ti...Intra-body communication (IBC) is a new,emerging,short-range and human body based communication methodology.It is a technique to network various devices on human body,by utilizing the conducting properties of human tissues,suitable for currently fast developing Body area network (BAN)/Body sensor network (BSN).IBC is believed to have advantages in power consumption,electromagnetic radiation,interference from external electromagnetic noise,security,and restriction in spectrum resource.In this article,the authors develop two models,which are analytical and empirical approaches,for comparing the performance and accuracy of IBC on a human limb.Through in vivo experiment of five volunteers,both models basically match with the experimental result with equivalent circuit model superior than electromagnetic model in term of maximum error.展开更多
With the unique characteristics,electromagnetic launch technology is applicable to launch shipborne anti-torpedo torpedo(ATT).This paper aims to establish an analytic model to pre-evaluate the capture probability of t...With the unique characteristics,electromagnetic launch technology is applicable to launch shipborne anti-torpedo torpedo(ATT).This paper aims to establish an analytic model to pre-evaluate the capture probability of the electromagnetic launched ATT.The mathematics model of the multi-stage coilgun and the trajectory of the ATT is established for analysis.The influence factors of the capture probability are analyzed respectively,including the entry point dispersion of the ATT and the position dispersion of the incoming torpedo.Adopting the advanced angle interception mode,the ATT search model is obtained according to the positional relationship,and the course error is synthetically calculated according to the differentiation of implicit function.A geometric method to calculate the integral boundaries of the probability density function is proposed,based on the relative motion of the ATT and the incoming target.To verify the proposed integral model,the digital simulation and comparison is conducted.The results reveal that the variation trends and the calculation value of the proposed analytic model are coincident with the statistic results from Monte Carlo method.And implications of the results regarding the analytic model are discussed.展开更多
In order to deal with modeling problem of a pressure balance system with time-delay, nonlinear, time-varying and uncertain characteristics, an intelligent modeling procedure is proposed, which is based on artificial n...In order to deal with modeling problem of a pressure balance system with time-delay, nonlinear, time-varying and uncertain characteristics, an intelligent modeling procedure is proposed, which is based on artificial neural network(ANN) and input-output data of the system during shield tunneling and can overcome the precision problem in mechanistic modeling(MM) approach. The computational results show that the training algorithm with Gauss-Newton optimization has fast convergent speed. The experimental investigation indicates that, compared with mechanistic modeling approach, intelligent modeling procedure can obviously increase the precision in both soil pressure fitting and forecasting period. The effectiveness and accuracy of proposed intelligent modeling procedure are verified in laboratory tests.展开更多
Based on the nondestructive test data of operating railway tunnels in China, this paper summarizes the basic characteristics of the complex contact behavior between the rock mass and lining structure. The contact mode...Based on the nondestructive test data of operating railway tunnels in China, this paper summarizes the basic characteristics of the complex contact behavior between the rock mass and lining structure. The contact modes are classified into dense contact, local non-contact, and loose contact. Subsequently, the corresponding mechanical model for each contact mode is developed according to its mechanical characteristics using the complex variable method. In the proposed mechanical model, a special algorithm is introduced to detect whether the local non-contact zone is re-contacted. Besides, a novel conformal mapping method is also proposed to accurately calculate the mechanical response of the concrete lining. Finally, the accuracy of the proposed method is verified by comparing it with the finite element method(FEM). Several parameter investigations are conducted to analyze the effects of different contact modes on the rock-lining interaction. The results show that:(i) the height of the local noncontact area does not have a significant effect on the contact stress distribution if no re-contact occurs;(ii) backfill grouting can reduce the local stress concentration caused by poor contact modes;and(iii) reducing the friction coefficient of the interface can lead to a more uniform distribution of internal forces in the concrete lining.展开更多
This paper presents an exact analytical subdomain model of dual-stator consequent-pole permanent-magnet(DSCPPM)machines accounting for tooth-tips,which can accurately predict the armature reaction field distribution i...This paper presents an exact analytical subdomain model of dual-stator consequent-pole permanent-magnet(DSCPPM)machines accounting for tooth-tips,which can accurately predict the armature reaction field distribution in DSCPPM machines.In the proposed subdomain model,the field domain is composed of four types of sub-regions,viz.magnets,outer/inner air gaps,slots and slot openings.The analytical expressions of vector potential in each sub-region are determined by boundary and interface conditions.In comparison to the analytically predicted results,the corresponding flux density field distributions computed by finite element(FE)method are analyzed,which confirms the excellent accuracy of the developed subdomain model.展开更多
A simple analytical model method for dynamics of robotic manipulators is proposed.Problem of deriving model matrix elements is transformed into problem of solving for driving forceand driving torque under specified co...A simple analytical model method for dynamics of robotic manipulators is proposed.Problem of deriving model matrix elements is transformed into problem of solving for driving forceand driving torque under specified condition by recursive dynamic equations. Expressions of reaction force in arbitrary joint in numeric-symbolic form are also derived. The properties of modelmatrices are given. Corresponding software which can recognize and manipulate symbols is developed and can be used to generate model and real-time code of robotic dynamics.展开更多
基金This research work was financially supported by the National Natural Science Foundation of China(Grant Nos.52078182 and 41877255)the Tianjin Municipal Natural Science Foundation(Grant No.20JCYBJC00630).Their financial support is gratefully acknowledged.
文摘To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general hyperbolic creep model was first introduced to describe the long-term deformation of geosynthetics,which is a function of elapsed time and two empirical parameters a and b.The conventional creep tests with three different tensile loads(Pr)were conducted on two uniaxial geogrids to determine their creep behavior,as well as the a-Pr and b-Pr relationships.The test results show that increasing Pr accelerates the development of creep deformation for both geogrids.Meanwhile,a and b respectively show exponential and negatively linear relationships with Pr,which were confirmed by abundant experimental data available in other studies.Based on the above creep model and relationships,an accurate and reliable analytical model was then proposed for predicting the time-dependent d of GRS walls with modular block facing,which was further validated using a relevant numerical investigation from the previous literature.Performance evaluation and comparison of the proposed model with six available prediction models were performed.Then a parametric study was carried out to evaluate the effects of wall height,vertical spacing of geogrids,unit weight and internal friction angle of backfills,and factor of safety against pullout on d at the end of construction and 5 years afterwards.The findings show that the creep effect not only promotes d but also raises the elevation of the maximum d along the wall height.Finally,the limitations and application prospects of the proposed model were discussed and analyzed.
基金Projects (09-QZ-2008, 24-TZ-2009) supported by the Free Research Fund of State Key Laboratory of Solidification Processing, ChinaProject (B08040) supported by the Program of Introducing Talents of Discipline to Universities, China+3 种基金Projects (51071127, 51134011) supported by the National Natural Science Foundation of ChinaProject (JC200801) supported by the Fundamental Research Fund of Northwestern Polytechnical University, ChinaProject (51125002) supported by the National Science Foundation for Distinguished Young Scholars, ChinaProject (2011CB610403) supported by the National Basic Research Program of China
文摘Departing from an analytical phase transformation model, a new analytical approach to deduce transformed fraction for non-isothermal phase transformation was developed. In the new approach, the effect of the initial transformation temperature and the accurate "temperature integral" approximations are incorporated to obtain an extended analytical model. Numerical approach demonstrated that the extended analytical model prediction for transformed fraction and transformation rate is in good agreement with the exact numerical calculation. The new model can describe more precisely the kinetic behavior than the original analytical model, especially for transformation with relatively high initial transformation temperature. The kinetic parameters obtained from the new model are more accurate and reasonable than those from the original analytical model.
文摘Based on the 65nm CMOS process,a novel parallel RLC coupling interconnect analytical model is presented synthetically considering parasitical capacitive and parasitical inductive effects. Applying function approximation and model order-reduction to the model, we derive a closed-form and time-domain waveform for the far-end crosstalk of a victim line under ramp input transition. For various interconnect coupling sizes, the proposed RLC coupling analytical model enables the estimation of the crosstalk voltage within 2.50% error compared with Hspice simulation in a 65nm CMOS process. This model can be used in computer-aided-design of nanometer SOCs.
文摘Due to interaction among cells, it is too complex to build an exactanalytical model for the power dissipation within the cell membrane in suspensions exposed toexternal fields. An approximate equivalence method is proposed to resolve this problem. Based on theeffective medium theory, the transmembrane voltage on cells in suspensions was investigated by theequivalence principle. Then the electric field in the cell membrane was determined. Finally,analytical solutions for the power dissipation within the cell membrane in suspensions exposed toexternal fields were derived according to the Joule principle. The equations show that theconductive power dissipation is predominant within the cell membrane in suspensions exposed todirect current or lower frequencies, and dielectric power dissipation prevails at high frequenciesexceeding the relaxation frequency of the exposed membrane.
文摘An analytical model of electron mobility for strained-silicon channel nMOSFETs is proposed in this paper. The model deals directly with the strain tensor,and thus is independent of the manufacturing process. It is suitable for (100〉/ 〈110) channel nMOSFETs under biaxial or (100〉/〈 110 ) uniaxial stress and can be implemented in conventional device simulation tools .
文摘The analytical model for springback in arc bending of sheet metal can serve as an excellent design support.The amount of springback is considerably influenced by the geometrical and the material parameters associated with the sheet metal.In addition,the applied load during the bending also has a significant influence.Although a number of numerical techniques have been used for this purpose,only few analytical models that can provide insight into the phenomenon are available.A phenomenological model for predicting the springback in arc bending was proposed based on strain as well as deformation energy based approaches.The results of the analytical model were compared with the published experimental as well as FE results of the authors,and the agreement was found to be satisfactory.
基金This work is supported the National Natural Science Foundation of China (No. 11374272 and No. 11574284), the National Basic Research Program of China (No.2012CB215405) and Collaborative Innovation Center of Suzhou Nano Science and Technology are gratefully acknowledged.
文摘A multiphysics model for a production scale planar solid oxide fuel cell (SOFC) stack is important for the SOFC technology, but usually requires an unpractical amount of computing resource. The major cause for the huge computing resource requirement is identified as the need to solve the cathode O2 transport and the associated electrochemistry. To overcome the technical obstacle, an analytical model for solving the O2 transport and its coupling with the electrochemistry is derived. The analytical model is used to greatly reduce the numerical mesh complexity of a multiphysics model. Numerical test shows that the analytical approximation is highly accurate and stable. A multiphysics numerical modeling tool taking advantage of the analytical solution is then developed through Fluent@. The numerical efficiency and stability of this modeling tool are further demonstrated by simulating a 30- cell stack with a production scale cell size. Detailed information about the stack performance is revealed and briefly discussed. The multiphysics modeling tool can be used to guide the stack design and select the operating parameters.
文摘The environmental risks associated with casing deformation in unconventional(shale)gas wells positioned in abutment pillars of longwall mines is a concern to many in the mining and gas well industry.With the recent interest in shale exploration and the proximity to longwall mining in Southwestern Pennsylvania,the risk to mine workers could be catastrophic as fractures in surrounding strata create pathways for transport of leaked gases.Hence,this research by the National Institute for Occupational Safety and Health(NIOSH)presents an analytical model of the gas transport through fractures in a low permeable stratum.The derived equations are used to conduct parametric studies of specific transport conditions to understand the influence of stratum geology,fracture lengths,and the leaked gas properties on subsurface transport.The results indicated that the prediction that the subsurface gas flux decreases with an increase in fracture length is specifically for a non-gassy stratum.The sub-transport trend could be significantly impacted by the stratum gas generation rate within specific fracture lengths,which emphasized the importance of the stratum geology.These findings provide new insights for improved understanding of subsurface gas transport to ensure mine safety.
基金The project supported by NSF of Shandong Province
文摘According to the physiological and anatomical characteristics of small intestine,neglecting the effect of its motility on the distribution and absorption of drug and nutrient,Y.Miyamoto et al.proposed a model of two-dimensional laminar flow in a circular porous tube with permeable wall and calculated the concentration profile of drugby numerical analysis.In this paper,we give a steady-state analytical solution of the above model including deactivationterm.The obtained results are in agreement with the results of their numerical analysis. Moreover the analytical solution presented in this paper reveals the relation among the physiological parameters of the model and describes the basic absorption rule of drug and nutrient through the intestinal wall and hence pro- vides a theoretical basis for determining the permeability and reflection coefficient through in situ experiments.
基金Projects(51139001,51179066,51079046,50909041) supported by the National Natural Science Foundation of ChinaProject(NCET-10-0359) supported by the Program for New Century Excellent Talents in UniversityProjects(2009586012,2009586912,2010585212)supported by the Special Fund of State Key Laboratory of China
文摘According to the characteristics of thin-layer rolling and pouting construction technology and the complicated mechanical behavior of the roller compacted concrete dam (RCCD) construction interface, a constitutive model of endochronic damage was established based on the endochronic theory and damage mechanics. The proposed model abandons the traditional concept of elastic-plastic yield surface and can better reflect the real behavior of rolled control concrete. Basic equations were proposed for the fluid-solid coupling analysis, and the relationships among the corresponding key physical parameters were also put forward. One three-dimensional finite element method (FEM) program was obtained by studying the FEM type of the seepage-stress coupling intersection of the RCCD. The method was applied to an actual project, and the results show that the fluid-solid interaction influences dam deformation and dam abutment stability, which is in accordance with practice. Therefore, this model provides a new method for revealing the mechanical behavior of RCCD under the coupling field.
基金the Slovak Research and Development Agency under the contract No.COST-0022-06,APVV-51-061505the 6th FP EU NESPA+5 种基金the Slovak Grant Agency VEGA (2/7197/27,2/7194/27,2/7195/27)NANOSMART,Centre of Excellence (1/1/2007-31/12/2010)Slovak Academy of Sciences,by KMM-NoE 502243-2 (10/2004-9/2008)NENAMAT INCO-CT-2003-510363COST Action 536 and COST Action 538János Bolyai Research Grant NSF-MTA-OTKA grant-MTA:96/OTKA:049953,OTKA 63609
文摘Based on the fundamental equations of the mechanics of solid continuum, the paper employs an analytical model for determination of elastic thermal stresses in isotropic continuum represented by periodically distributed spherical particles with different distributions in an infinite matrix, imaginarily divided into identical cells with dimensions equal to inter-particle distances, containing a central spherical particle with or without a spherical envelope on the particle surface. Consequently, the multi-particle-(envelope)- matrix system, as a model system regarding the analytical modelling, is applicable to four types of multi-phase materials. As functions of the particle volume fraction v, the inter-particle distances dl, d2, d3 along three mutually per- pendicular axes, and the particle and envelope radii, R1 and R2, respectively, the thermal stresses within the cell, are originated during a cooling process as a consequence of the difference in thermal expansion coefficients of phases rep- resented by the matrix, envelope and particle. Analytical-(experimental)-computational lifetime prediction methods for multi-phase materials are proposed, which can be used in engineering with appropriate values of parameters of real multi-phase materials.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61204092 and 61076101) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. K50511250001 ).
文摘Based on the quasi-two-dimensional (2D) solution of Poisson's equation in two continuous channel regions, an an- alytical threshold voltage model for short-channel junctionless dual-material cylindrical surrounding-gate (JLDMCSG) metal-oxide-semiconductor field-effect transistor (MOSFET) is developed. Using the derived model, channel potential dis- tribu6o~, h~riz~atal electrical ~eld distributign, a~d threshold v~ltage roll-off of ~LDMCSG MOSFET are in,instigated. Compared with junctionless single-material CSG (JLSGCSG) MOSFET~ JLDMCSG MOSFET can effectively suppress short-channel effects and simultaneously improve carrier transport efficiency. It is also revealed that threshold voltage roll- off of JLDMCSG can be significantly reduced by adopting both a small oxide thickness and a small silicon channel radius. The model is verified by comparing its calculated results with that obtained from three-dimensional (3D) numerical device simulator ISE.
基金Project supported by the National Natural Science Foundation of China(Nos.11171238,51279117,and 11072161)the Program for New Century Excellent Talents in University of China(No.NCET-13-0393)the National Science and Technology Ministry of China(No.2012BAB05B02)
文摘A simple but applicable analytical model is presented to predict the lat- eral distribution of the depth-averaged velocity in meandering compound channels. The governing equation with curvilinear coordinates is derived from the momentum equation and the flow continuity equation under the condition of quasi-uniform flow. A series of experiments are conducted in a large-scale meandering compound channel. Based on the experimental data, a magnitude analysis is carried out for the governing equation, and two lower-order shear stress terms are ignored. Four groups of experimental data from different sources are used to verify the predictive capability of this model, and good predictions are obtained. Finally, the determination of the velocity parameter and the limitation of this model are discussed.
文摘Automotive suspension control arm is used to join the steering knuckle to the vehicle frame. Its main function is to provide stability under fatigue stresses of loading and unloading in accelerating and braking. Conventionally, these parts were made of steel; however, fuel consumption and emission of polluting gases are strongly dependent on car weight. Recently, there is a try to develop and design much lighter and better fatigue resistant metal of semisolid A357 aluminum alloys. This work aims at a better understanding of identifying the fatigue strain-hardening parameters used for determining fatigue characteristics of aluminum suspension control arm using analytical and mathematical modeling. The most judicious method is to perform the fatigue tests on standardized test pieces and then plot two Wohler curves, mainly number of cycles as a function of the stress and as a function of the deformation. From these curves and following a certain mathematical and analytical methods, certain curves are plotted and then all of these coefficients are drawn. The new calculated parameters showed a clear improvement of the fatigue curve towards the experimental curve performed on the samples of aluminum alloy A357 compared with the same analytical curve for the same alloy.
基金supported by The Science and Technology Development Fund of Macao under grant 014/2007/A1,063/2009/A and 024/2009/A1the Research Committee of the University of Macao under Grants UL012/09-Y1/EEE/VMI01/FST,RG077/09-10S/ VMI/FST,RG075/07-08S/10T/VMI/FST,and RG072/09-10S/ MPU/FSTthe Funds of Fujian Provincial Department of Science & Technology as 2007Y0024,2007T0009,2007I0018 and 2008J1005
文摘Intra-body communication (IBC) is a new,emerging,short-range and human body based communication methodology.It is a technique to network various devices on human body,by utilizing the conducting properties of human tissues,suitable for currently fast developing Body area network (BAN)/Body sensor network (BSN).IBC is believed to have advantages in power consumption,electromagnetic radiation,interference from external electromagnetic noise,security,and restriction in spectrum resource.In this article,the authors develop two models,which are analytical and empirical approaches,for comparing the performance and accuracy of IBC on a human limb.Through in vivo experiment of five volunteers,both models basically match with the experimental result with equivalent circuit model superior than electromagnetic model in term of maximum error.
基金National Natural Science Foundation of China(Grant No.51777212).
文摘With the unique characteristics,electromagnetic launch technology is applicable to launch shipborne anti-torpedo torpedo(ATT).This paper aims to establish an analytic model to pre-evaluate the capture probability of the electromagnetic launched ATT.The mathematics model of the multi-stage coilgun and the trajectory of the ATT is established for analysis.The influence factors of the capture probability are analyzed respectively,including the entry point dispersion of the ATT and the position dispersion of the incoming torpedo.Adopting the advanced angle interception mode,the ATT search model is obtained according to the positional relationship,and the course error is synthetically calculated according to the differentiation of implicit function.A geometric method to calculate the integral boundaries of the probability density function is proposed,based on the relative motion of the ATT and the incoming target.To verify the proposed integral model,the digital simulation and comparison is conducted.The results reveal that the variation trends and the calculation value of the proposed analytic model are coincident with the statistic results from Monte Carlo method.And implications of the results regarding the analytic model are discussed.
基金Project(2013CB035402) supported by the National Basic Research Program of ChinaProjects(51105048,51209028) supported by the National Natural Science Foundation of China
文摘In order to deal with modeling problem of a pressure balance system with time-delay, nonlinear, time-varying and uncertain characteristics, an intelligent modeling procedure is proposed, which is based on artificial neural network(ANN) and input-output data of the system during shield tunneling and can overcome the precision problem in mechanistic modeling(MM) approach. The computational results show that the training algorithm with Gauss-Newton optimization has fast convergent speed. The experimental investigation indicates that, compared with mechanistic modeling approach, intelligent modeling procedure can obviously increase the precision in both soil pressure fitting and forecasting period. The effectiveness and accuracy of proposed intelligent modeling procedure are verified in laboratory tests.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51738002 and 52108376)Fundamental Research Funds for the Central Universities (Grant No. 2021CZ111)
文摘Based on the nondestructive test data of operating railway tunnels in China, this paper summarizes the basic characteristics of the complex contact behavior between the rock mass and lining structure. The contact modes are classified into dense contact, local non-contact, and loose contact. Subsequently, the corresponding mechanical model for each contact mode is developed according to its mechanical characteristics using the complex variable method. In the proposed mechanical model, a special algorithm is introduced to detect whether the local non-contact zone is re-contacted. Besides, a novel conformal mapping method is also proposed to accurately calculate the mechanical response of the concrete lining. Finally, the accuracy of the proposed method is verified by comparing it with the finite element method(FEM). Several parameter investigations are conducted to analyze the effects of different contact modes on the rock-lining interaction. The results show that:(i) the height of the local noncontact area does not have a significant effect on the contact stress distribution if no re-contact occurs;(ii) backfill grouting can reduce the local stress concentration caused by poor contact modes;and(iii) reducing the friction coefficient of the interface can lead to a more uniform distribution of internal forces in the concrete lining.
基金This work was supported by the National Natural Science Foundation of China under Grant 51677169 and Grant 51637009 and by the Fundamental Research Funds for the Central Universities under Grant 2017QNA4016.
文摘This paper presents an exact analytical subdomain model of dual-stator consequent-pole permanent-magnet(DSCPPM)machines accounting for tooth-tips,which can accurately predict the armature reaction field distribution in DSCPPM machines.In the proposed subdomain model,the field domain is composed of four types of sub-regions,viz.magnets,outer/inner air gaps,slots and slot openings.The analytical expressions of vector potential in each sub-region are determined by boundary and interface conditions.In comparison to the analytically predicted results,the corresponding flux density field distributions computed by finite element(FE)method are analyzed,which confirms the excellent accuracy of the developed subdomain model.
文摘A simple analytical model method for dynamics of robotic manipulators is proposed.Problem of deriving model matrix elements is transformed into problem of solving for driving forceand driving torque under specified condition by recursive dynamic equations. Expressions of reaction force in arbitrary joint in numeric-symbolic form are also derived. The properties of modelmatrices are given. Corresponding software which can recognize and manipulate symbols is developed and can be used to generate model and real-time code of robotic dynamics.