The use of a CO2 laser system for fabrication of microfluidic chip on polymethyl methacrylate (PMMA) is presented to reduce fabrication cost and time of chip. The grooving process of the laser system and a model for...The use of a CO2 laser system for fabrication of microfluidic chip on polymethyl methacrylate (PMMA) is presented to reduce fabrication cost and time of chip. The grooving process of the laser system and a model for the depth of microchannels are investigated. The relations between the depth of laser-cut channels and the laser beam power, velocity or the number of passes of the beam along the same channel are evaluated. In the experiments, the laser beam power varies from 0 to 50 W, the laser beam scanning velocity varies from 0 to 1 000 mm/s and the passes vary in the range of 1 to 10 times. Based on the principle of conservation of energy, the influence of the laser beam velocity, the laser power and the number of groove passes are examine. Considering the grooving interval energy loss, a modified mathematical model has been obtained and experimental data show good agreement with the theoretical model. This approach provides a simple way of predicting groove depths. The system provides a cost alternative of the other methods and it is especially useful on research work of rnicrofluidic prototyping due to the short cycle time of production.展开更多
BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are p...BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are pivotal in identifying the most suitable transplant candidates.Traditionally,scoring systems like the model for end-stage liver disease have been instrumental in this process.Nevertheless,the landscape of prognostication is undergoing a transformation with the integration of machine learning(ML)and artificial intelligence models.AIM To assess the utility of ML models in prognostication for LT,comparing their performance and reliability to established traditional scoring systems.METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines,we conducted a thorough and standardized literature search using the PubMed/MEDLINE database.Our search imposed no restrictions on publication year,age,or gender.Exclusion criteria encompassed non-English studies,review articles,case reports,conference papers,studies with missing data,or those exhibiting evident methodological flaws.RESULTS Our search yielded a total of 64 articles,with 23 meeting the inclusion criteria.Among the selected studies,60.8%originated from the United States and China combined.Only one pediatric study met the criteria.Notably,91%of the studies were published within the past five years.ML models consistently demonstrated satisfactory to excellent area under the receiver operating characteristic curve values(ranging from 0.6 to 1)across all studies,surpassing the performance of traditional scoring systems.Random forest exhibited superior predictive capabilities for 90-d mortality following LT,sepsis,and acute kidney injury(AKI).In contrast,gradient boosting excelled in predicting the risk of graft-versus-host disease,pneumonia,and AKI.CONCLUSION This study underscores the potential of ML models in guiding decisions related to allograft allocation and LT,marking a significant evolution in the field of prognostication.展开更多
The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper ...The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper makes an attempt to assess landslide susceptibility in Shimla district of the northwest Indian Himalayan region.It examined the effectiveness of random forest(RF),multilayer perceptron(MLP),sequential minimal optimization regression(SMOreg)and bagging ensemble(B-RF,BSMOreg,B-MLP)models.A landslide inventory map comprising 1052 locations of past landslide occurrences was classified into training(70%)and testing(30%)datasets.The site-specific influencing factors were selected by employing a multicollinearity test.The relationship between past landslide occurrences and influencing factors was established using the frequency ratio method.The effectiveness of machine learning models was verified through performance assessors.The landslide susceptibility maps were validated by the area under the receiver operating characteristic curves(ROC-AUC),accuracy,precision,recall and F1-score.The key performance metrics and map validation demonstrated that the BRF model(correlation coefficient:0.988,mean absolute error:0.010,root mean square error:0.058,relative absolute error:2.964,ROC-AUC:0.947,accuracy:0.778,precision:0.819,recall:0.917 and F-1 score:0.865)outperformed the single classifiers and other bagging ensemble models for landslide susceptibility.The results show that the largest area was found under the very high susceptibility zone(33.87%),followed by the low(27.30%),high(20.68%)and moderate(18.16%)susceptibility zones.The factors,namely average annual rainfall,slope,lithology,soil texture and earthquake magnitude have been identified as the influencing factors for very high landslide susceptibility.Soil texture,lineament density and elevation have been attributed to high and moderate susceptibility.Thus,the study calls for devising suitable landslide mitigation measures in the study area.Structural measures,an immediate response system,community participation and coordination among stakeholders may help lessen the detrimental impact of landslides.The findings from this study could aid decision-makers in mitigating future catastrophes and devising suitable strategies in other geographical regions with similar geological characteristics.展开更多
BACKGROUND Colorectal cancer significantly impacts global health,with unplanned reoperations post-surgery being key determinants of patient outcomes.Existing predictive models for these reoperations lack precision in ...BACKGROUND Colorectal cancer significantly impacts global health,with unplanned reoperations post-surgery being key determinants of patient outcomes.Existing predictive models for these reoperations lack precision in integrating complex clinical data.AIM To develop and validate a machine learning model for predicting unplanned reoperation risk in colorectal cancer patients.METHODS Data of patients treated for colorectal cancer(n=2044)at the First Affiliated Hospital of Wenzhou Medical University and Wenzhou Central Hospital from March 2020 to March 2022 were retrospectively collected.Patients were divided into an experimental group(n=60)and a control group(n=1984)according to unplanned reoperation occurrence.Patients were also divided into a training group and a validation group(7:3 ratio).We used three different machine learning methods to screen characteristic variables.A nomogram was created based on multifactor logistic regression,and the model performance was assessed using receiver operating characteristic curve,calibration curve,Hosmer-Lemeshow test,and decision curve analysis.The risk scores of the two groups were calculated and compared to validate the model.RESULTS More patients in the experimental group were≥60 years old,male,and had a history of hypertension,laparotomy,and hypoproteinemia,compared to the control group.Multiple logistic regression analysis confirmed the following as independent risk factors for unplanned reoperation(P<0.05):Prognostic Nutritional Index value,history of laparotomy,hypertension,or stroke,hypoproteinemia,age,tumor-node-metastasis staging,surgical time,gender,and American Society of Anesthesiologists classification.Receiver operating characteristic curve analysis showed that the model had good discrimination and clinical utility.CONCLUSION This study used a machine learning approach to build a model that accurately predicts the risk of postoperative unplanned reoperation in patients with colorectal cancer,which can improve treatment decisions and prognosis.展开更多
Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a p...Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a particular geographic region or location, also known as geo-spatial data or geographic information. Focusing on spatial heterogeneity, we present a hybrid machine learning model combining two competitive algorithms: the Random Forest Regressor and CNN. The model is fine-tuned using cross validation for hyper-parameter adjustment and performance evaluation, ensuring robustness and generalization. Our approach integrates Global Moran’s I for examining global autocorrelation, and local Moran’s I for assessing local spatial autocorrelation in the residuals. To validate our approach, we implemented the hybrid model on a real-world dataset and compared its performance with that of the traditional machine learning models. Results indicate superior performance with an R-squared of 0.90, outperforming RF 0.84 and CNN 0.74. This study contributed to a detailed understanding of spatial variations in data considering the geographical information (Longitude & Latitude) present in the dataset. Our results, also assessed using the Root Mean Squared Error (RMSE), indicated that the hybrid yielded lower errors, showing a deviation of 53.65% from the RF model and 63.24% from the CNN model. Additionally, the global Moran’s I index was observed to be 0.10. This study underscores that the hybrid was able to predict correctly the house prices both in clusters and in dispersed areas.展开更多
The use of traditional herbal drugs derived from natural sources is on the rise due to their minimal side effects and numerous health benefits.However,a major limitation is the lack of standardized knowledge for ident...The use of traditional herbal drugs derived from natural sources is on the rise due to their minimal side effects and numerous health benefits.However,a major limitation is the lack of standardized knowledge for identifying and mapping the quality of these herbal medicines.This article aims to provide practical insights into the application of artificial intelligence for quality-based commercialization of raw herbal drugs.It focuses on feature extraction methods,image processing techniques,and the preparation of herbal images for compatibility with machine learning models.The article discusses commonly used image processing tools such as normalization,slicing,cropping,and augmentation to prepare images for artificial intelligence-based models.It also provides an overview of global herbal image databases and the models employed for herbal plant/drug identification.Readers will gain a comprehensive understanding of the potential application of various machine learning models,including artificial neural networks and convolutional neural networks.The article delves into suitable validation parameters like true positive rates,accuracy,precision,and more for the development of artificial intelligence-based identification and authentication techniques for herbal drugs.This article offers valuable insights and a conclusive platform for the further exploration of artificial intelligence in the field of herbal drugs,paving the way for smarter identification and authentication methods.展开更多
A layered modeling method is proposed to resolve the problems resulting from the complexity of the error model of a multi-axis motion control system. In this model, a low level layer can be used as a virtual axis by t...A layered modeling method is proposed to resolve the problems resulting from the complexity of the error model of a multi-axis motion control system. In this model, a low level layer can be used as a virtual axis by the high level layer. The first advantage of this model is that the complex error model of a four-axis motion control system can be divided into several simple layers and each layer has different coupling strength to match the real control system. The second advantage lies in the fact that the controller in each layer can be designed specifically for a certain purpose. In this research, a three-layered cross coupling scheme in a four-axis motion control system is proposed to compensate the contouring error of the motion control system. Simulation results show that the maximum contouring error is reduced from 0.208 mm to 0.022 mm and the integration of absolute error is reduced from 0.108 mm to 0.015 mm, which are respectively better than 0.027 mm and 0.037 mm by the traditional method. And in the bottom layer the proposed method also has remarkable ability to achieve high contouring accuracy.展开更多
In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the...In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements.展开更多
The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning mode...The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning models have some problems,such as poor nonlinear performance,local optimum and incomplete factors feature extraction.These issues can affect the accuracy of slope stability prediction.Therefore,a deep learning algorithm called Long short-term memory(LSTM)has been innovatively proposed to predict slope stability.Taking the Ganzhou City in China as the study area,the landslide inventory and their characteristics of geotechnical parameters,slope height and slope angle are analyzed.Based on these characteristics,typical soil slopes are constructed using the Geo-Studio software.Five control factors affecting slope stability,including slope height,slope angle,internal friction angle,cohesion and volumetric weight,are selected to form different slope and construct model input variables.Then,the limit equilibrium method is used to calculate the stability coefficients of these typical soil slopes under different control factors.Each slope stability coefficient and its corresponding control factors is a slope sample.As a result,a total of 2160 training samples and 450 testing samples are constructed.These sample sets are imported into LSTM for modelling and compared with the support vector machine(SVM),random forest(RF)and convo-lutional neural network(CNN).The results show that the LSTM overcomes the problem that the commonly used machine learning models have difficulty extracting global features.Furthermore,LSTM has a better prediction performance for slope stability compared to SVM,RF and CNN models.展开更多
To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method propose...To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method proposed by the authors promotes the application of slope units.However,LSP modeling based on these slope units has not been performed.Moreover,the heterogeneity of conditioning factors in slope units is neglected,leading to incomplete input variables of LSP modeling.In this study,the slope units extracted by the MSS method are used to construct LSP modeling,and the heterogeneity of conditioning factors is represented by the internal variations of conditioning factors within slope unit using the descriptive statistics features of mean,standard deviation and range.Thus,slope units-based machine learning models considering internal variations of conditioning factors(variant slope-machine learning)are proposed.The Chongyi County is selected as the case study and is divided into 53,055 slope units.Fifteen original slope unit-based conditioning factors are expanded to 38 slope unit-based conditioning factors through considering their internal variations.Random forest(RF)and multi-layer perceptron(MLP)machine learning models are used to construct variant Slope-RF and Slope-MLP models.Meanwhile,the Slope-RF and Slope-MLP models without considering the internal variations of conditioning factors,and conventional grid units-based machine learning(Grid-RF and MLP)models are built for comparisons through the LSP performance assessments.Results show that the variant Slopemachine learning models have higher LSP performances than Slope-machine learning models;LSP results of variant Slope-machine learning models have stronger directivity and practical application than Grid-machine learning models.It is concluded that slope units extracted by MSS method can be appropriate for LSP modeling,and the heterogeneity of conditioning factors within slope units can more comprehensively reflect the relationships between conditioning factors and landslides.The research results have important reference significance for land use and landslide prevention.展开更多
This paper presents a state-of-the-art review in modeling approach of hardware in the loop simulation(HILS)realization of electric machine drives using commercial real time machines.HILS implementation using digital s...This paper presents a state-of-the-art review in modeling approach of hardware in the loop simulation(HILS)realization of electric machine drives using commercial real time machines.HILS implementation using digital signal processors(DSPs)and field programmable gate array(FPGA)for electric machine drives has been investigated but those methods have drawbacks such as complexity in development and verification.Among various HILS implementation approaches,more efficient development and verification for electric machine drives can be achieved through use of commercial real time machines.As well as implementation of the HILS,accurate modeling of a control target system plays an important role.Therefore,modeling trend in electric machine drives for HILS implementation is needed to be reviewed.This paper provides a background of HILS and commercially available real time machines and characteristics of each real time machine are introduced.Also,recent trends and progress of permanent magnet synchronous machines(PMSMs)modeling are presented for providing more accurate HILS implementation approaches in this paper.展开更多
Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measur...Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measure well and is good at dealing with continuous dynamic signals. SVM expresses inter-class difference effectively and has perfect classify ability. This approach is built on the merit of HMM and SVM. Then, the experiment is made in the transmission system of a helicopter. With the features extracted from vibration signals in gearbox, this HMM-SVM based diagnostic approach is trained and used to monitor and diagnose the gearbox's faults. The result shows that this method is better than HMM-based and SVM-based diagnosing methods in higher diagnostic accuracy with small training samples.展开更多
In recent years evidence has emerged suggesting that Mini-basketball training program(MBTP)can be an effec-tive intervention method to improve social communication(SC)impairments and restricted and repetitive beha-vio...In recent years evidence has emerged suggesting that Mini-basketball training program(MBTP)can be an effec-tive intervention method to improve social communication(SC)impairments and restricted and repetitive beha-viors(RRBs)in preschool children suffering from autism spectrum disorder(ASD).However,there is a considerable degree if interindividual variability concerning these social outcomes and thus not all preschool chil-dren with ASD profit from a MBTP intervention to the same extent.In order to make more accurate predictions which preschool children with ASD can benefit from an MBTP intervention or which preschool children with ASD need additional interventions to achieve behavioral improvements,further research is required.This study aimed to investigate which individual factors of preschool children with ASD can predict MBTP intervention out-comes concerning SC impairments and RRBs.Then,test the performance of machine learning models in predict-ing intervention outcomes based on these factors.Participants were 26 preschool children with ASD who enrolled in a quasi-experiment and received MBTP intervention.Baseline demographic variables(e.g.,age,body,mass index[BMI]),indicators of physicalfitness(e.g.,handgrip strength,balance performance),performance in execu-tive function,severity of ASD symptoms,level of SC impairments,and severity of RRBs were obtained to predict treatment outcomes after MBTP intervention.Machine learning models were established based on support vector machine algorithm were implemented.For comparison,we also employed multiple linear regression models in statistics.Ourfindings suggest that in preschool children with ASD symptomatic severity(r=0.712,p<0.001)and baseline SC impairments(r=0.713,p<0.001)are predictors for intervention outcomes of SC impair-ments.Furthermore,BMI(r=-0.430,p=0.028),symptomatic severity(r=0.656,p<0.001),baseline SC impair-ments(r=0.504,p=0.009)and baseline RRBs(r=0.647,p<0.001)can predict intervention outcomes of RRBs.Statistical models predicted 59.6%of variance in post-treatment SC impairments(MSE=0.455,RMSE=0.675,R2=0.596)and 58.9%of variance in post-treatment RRBs(MSE=0.464,RMSE=0.681,R2=0.589).Machine learning models predicted 83%of variance in post-treatment SC impairments(MSE=0.188,RMSE=0.434,R2=0.83)and 85.9%of variance in post-treatment RRBs(MSE=0.051,RMSE=0.226,R2=0.859),which were better than statistical models.Ourfindings suggest that baseline characteristics such as symptomatic severity of 144 IJMHP,2022,vol.24,no.2 ASD symptoms and SC impairments are important predictors determining MBTP intervention-induced improvements concerning SC impairments and RBBs.Furthermore,the current study revealed that machine learning models can successfully be applied to predict the MBTP intervention-related outcomes in preschool chil-dren with ASD,and performed better than statistical models.Ourfindings can help to inform which preschool children with ASD are most likely to benefit from an MBTP intervention,and they might provide a reference for the development of personalized intervention programs for preschool children with ASD.展开更多
Fine-grained weather forecasting data,i.e.,the grid data with high-resolution,have attracted increasing attention in recent years,especially for some specific applications such as the Winter Olympic Games.Although Eur...Fine-grained weather forecasting data,i.e.,the grid data with high-resolution,have attracted increasing attention in recent years,especially for some specific applications such as the Winter Olympic Games.Although European Centre for Medium-Range Weather Forecasts(ECMWF)provides grid prediction up to 240 hours,the coarse data are unable to meet high requirements of these major events.In this paper,we propose a method,called model residual machine learning(MRML),to generate grid prediction with high-resolution based on high-precision stations forecasting.MRML applies model output machine learning(MOML)for stations forecasting.Subsequently,MRML utilizes these forecasts to improve the quality of the grid data by fitting a machine learning(ML)model to the residuals.We demonstrate that MRML achieves high capability at diverse meteorological elements,specifically,temperature,relative humidity,and wind speed.In addition,MRML could be easily extended to other post-processing methods by invoking different techniques.In our experiments,MRML outperforms the traditional downscaling methods such as piecewise linear interpolation(PLI)on the testing data.展开更多
Objective:To determine the clinical characteristics and prognosis of primary tracheobronchial tumors(PTTs)in children,and to explore the most common tumor identification methods.Methods:The medical records of children...Objective:To determine the clinical characteristics and prognosis of primary tracheobronchial tumors(PTTs)in children,and to explore the most common tumor identification methods.Methods:The medical records of children with PTTs who were hospitalized at the Children's Hospital of Chongqing Medical University from January 1995 to January 2020 were reviewed retrospectively.The clinical features,imaging,treatments,and outcomes of these patients were statistically analyzed.Machine learning techniques such as Gaussian na?ve Bayes,support vector machine(SVM)and decision tree models were used to identify mucoepidermoid carcinoma(ME).Results:A total of 16 children were hospitalized with PTTs during the study period.This included 5(31.3%)children with ME,3(18.8%)children with inflammatory myofibroblastic tumors(IMT),2 children(12.5%)with sarcomas,2(12.5%)children with papillomatosis and 1 child(6.3%)each with carcinoid carcinoma,adenoid cystic carcinoma(ACC),hemangioma,and schwannoma,respectively.ME was the most common tumor type and amongst the 3 ME recognition methods,the SVM model showed the best performance.The main clinical symptoms of PPTs were cough(81.3%),breathlessness(50%),wheezing(43.8%),progressive dyspnea(37.5%),hemoptysis(37.5%),and fever(25%).Of the 16 patients,7 were treated with surgery,8 underwent bronchoscopic tumor resection,and 1 child died.Of the 11 other children,3 experienced recurrence,and the last 8 remained disease-free.No deaths were observed during the follow-up period.Conclusion:PTT are very rare in children and the highest percentage of cases is due to ME.The SVM model was highly accurate in identifying ME.Chest CT and bronchoscopy can effectively diagnose PTTs.Surgery and bronchoscopic intervention can both achieve good clinical results and the prognosis of the 11 children that were followed up was good.展开更多
This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used ...This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection.展开更多
To study the rock deformation with three- dimensional model under rolling forces of disc cutter, by car- rying out the circular-grooving test with disc cutter rolling around on the rock, the rock mechanical behavior u...To study the rock deformation with three- dimensional model under rolling forces of disc cutter, by car- rying out the circular-grooving test with disc cutter rolling around on the rock, the rock mechanical behavior under rolling disc cutter is studied, the mechanical model of disc cutter rolling around the groove is established, and the the- ory of single-point and double-angle variables is proposed. Based on this theory, the physics equations and geometric equations of rock mechanical behavior under disc cutters of tunnel boring machine (TBM) are studied, and then the bal- ance equations of interactive forces between disc cutter and rock are established. Accordingly, formulas about normal force, rolling force and side force of a disc cutter are de- rived, and their validity is studied by tests. Therefore, a new method and theory is proposed to study rock- breaking mech- anism of disc cutters.展开更多
Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model ...Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones.展开更多
Line configuration and balancing is to select the type of line and allot a given set of operations as well as machines to a sequence of workstations to realize high-efficiency production. Most of the current researche...Line configuration and balancing is to select the type of line and allot a given set of operations as well as machines to a sequence of workstations to realize high-efficiency production. Most of the current researches for machining line configuration and balancing problems are related to dedicated transfer lines with dedicated machine workstations. With growing trends towards great product variety and fluctuations in market demand, dedicated transfer lines are being replaced with flexible machining line composed of identical CNC machines. This paper deals with the line configuration and balancing problem for flexible machining lines. The objective is to assign operations to workstations and find the sequence of execution, specify the number of machines in each workstation while minimizing the line cycle time and total number of machines. This problem is subject to precedence, clustering, accessibility and capacity constraints among the features, operations, setups and workstations. The mathematical model and heuristic algorithm based on feature group strategy and polychromatic sets theory are presented to find an optimal solution. The feature group strategy and polychromatic sets theory are used to establish constraint model. A heuristic operations sequencing and assignment algorithm is given. An industrial case study is carried out, and multiple optimal solutions in different line configurations are obtained. The case studying results show that the solutions with shorter cycle time and higher line balancing rate demonstrate the feasibility and effectiveness of the proposed algorithm. This research proposes a heuristic line configuration and balancing algorithm based on feature group strategy and polychromatic sets theory which is able to provide better solutions while achieving an improvement in computing time.展开更多
The exhaust emissions and frequent traffic incidents caused by traffic congestion have affected the operation and development of urban transport systems.Monitoring and accurately forecasting urban traffic operation is...The exhaust emissions and frequent traffic incidents caused by traffic congestion have affected the operation and development of urban transport systems.Monitoring and accurately forecasting urban traffic operation is a critical task to formulate pertinent strategies to alleviate traffic congestion.Compared with traditional short-time traffic prediction,this study proposes a machine learning algorithm-based traffic forecasting model for daily-level peak hour traffic operation status prediction by using abundant historical data of urban traffic performance index(TPI).The study also constructed a multi-dimensional influencing factor set to further investigate the relationship between different factors on the quality of road network operation,including day of week,time period,public holiday,car usage restriction policy,special events,etc.Based on long-term historical TPI data,this research proposed a daily dimensional road network TPI prediction model by using an extreme gradient boosting algorithm(XGBoost).The model validation results show that the model prediction accuracy can reach higher than 90%.Compared with other prediction models,including Bayesian Ridge,Linear Regression,ElatsicNet,SVR,the XGBoost model has a better performance,and proves its superiority in large high-dimensional data sets.The daily dimensional prediction model proposed in this paper has an important application value for predicting traffic status and improving the operation quality of urban road networks.展开更多
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No.2002AA421150)Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20030335091).
文摘The use of a CO2 laser system for fabrication of microfluidic chip on polymethyl methacrylate (PMMA) is presented to reduce fabrication cost and time of chip. The grooving process of the laser system and a model for the depth of microchannels are investigated. The relations between the depth of laser-cut channels and the laser beam power, velocity or the number of passes of the beam along the same channel are evaluated. In the experiments, the laser beam power varies from 0 to 50 W, the laser beam scanning velocity varies from 0 to 1 000 mm/s and the passes vary in the range of 1 to 10 times. Based on the principle of conservation of energy, the influence of the laser beam velocity, the laser power and the number of groove passes are examine. Considering the grooving interval energy loss, a modified mathematical model has been obtained and experimental data show good agreement with the theoretical model. This approach provides a simple way of predicting groove depths. The system provides a cost alternative of the other methods and it is especially useful on research work of rnicrofluidic prototyping due to the short cycle time of production.
文摘BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are pivotal in identifying the most suitable transplant candidates.Traditionally,scoring systems like the model for end-stage liver disease have been instrumental in this process.Nevertheless,the landscape of prognostication is undergoing a transformation with the integration of machine learning(ML)and artificial intelligence models.AIM To assess the utility of ML models in prognostication for LT,comparing their performance and reliability to established traditional scoring systems.METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines,we conducted a thorough and standardized literature search using the PubMed/MEDLINE database.Our search imposed no restrictions on publication year,age,or gender.Exclusion criteria encompassed non-English studies,review articles,case reports,conference papers,studies with missing data,or those exhibiting evident methodological flaws.RESULTS Our search yielded a total of 64 articles,with 23 meeting the inclusion criteria.Among the selected studies,60.8%originated from the United States and China combined.Only one pediatric study met the criteria.Notably,91%of the studies were published within the past five years.ML models consistently demonstrated satisfactory to excellent area under the receiver operating characteristic curve values(ranging from 0.6 to 1)across all studies,surpassing the performance of traditional scoring systems.Random forest exhibited superior predictive capabilities for 90-d mortality following LT,sepsis,and acute kidney injury(AKI).In contrast,gradient boosting excelled in predicting the risk of graft-versus-host disease,pneumonia,and AKI.CONCLUSION This study underscores the potential of ML models in guiding decisions related to allograft allocation and LT,marking a significant evolution in the field of prognostication.
文摘The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper makes an attempt to assess landslide susceptibility in Shimla district of the northwest Indian Himalayan region.It examined the effectiveness of random forest(RF),multilayer perceptron(MLP),sequential minimal optimization regression(SMOreg)and bagging ensemble(B-RF,BSMOreg,B-MLP)models.A landslide inventory map comprising 1052 locations of past landslide occurrences was classified into training(70%)and testing(30%)datasets.The site-specific influencing factors were selected by employing a multicollinearity test.The relationship between past landslide occurrences and influencing factors was established using the frequency ratio method.The effectiveness of machine learning models was verified through performance assessors.The landslide susceptibility maps were validated by the area under the receiver operating characteristic curves(ROC-AUC),accuracy,precision,recall and F1-score.The key performance metrics and map validation demonstrated that the BRF model(correlation coefficient:0.988,mean absolute error:0.010,root mean square error:0.058,relative absolute error:2.964,ROC-AUC:0.947,accuracy:0.778,precision:0.819,recall:0.917 and F-1 score:0.865)outperformed the single classifiers and other bagging ensemble models for landslide susceptibility.The results show that the largest area was found under the very high susceptibility zone(33.87%),followed by the low(27.30%),high(20.68%)and moderate(18.16%)susceptibility zones.The factors,namely average annual rainfall,slope,lithology,soil texture and earthquake magnitude have been identified as the influencing factors for very high landslide susceptibility.Soil texture,lineament density and elevation have been attributed to high and moderate susceptibility.Thus,the study calls for devising suitable landslide mitigation measures in the study area.Structural measures,an immediate response system,community participation and coordination among stakeholders may help lessen the detrimental impact of landslides.The findings from this study could aid decision-makers in mitigating future catastrophes and devising suitable strategies in other geographical regions with similar geological characteristics.
基金This study has been reviewed and approved by the Clinical Research Ethics Committee of Wenzhou Central Hospital and the First Hospital Affiliated to Wenzhou Medical University,No.KY2024-R016.
文摘BACKGROUND Colorectal cancer significantly impacts global health,with unplanned reoperations post-surgery being key determinants of patient outcomes.Existing predictive models for these reoperations lack precision in integrating complex clinical data.AIM To develop and validate a machine learning model for predicting unplanned reoperation risk in colorectal cancer patients.METHODS Data of patients treated for colorectal cancer(n=2044)at the First Affiliated Hospital of Wenzhou Medical University and Wenzhou Central Hospital from March 2020 to March 2022 were retrospectively collected.Patients were divided into an experimental group(n=60)and a control group(n=1984)according to unplanned reoperation occurrence.Patients were also divided into a training group and a validation group(7:3 ratio).We used three different machine learning methods to screen characteristic variables.A nomogram was created based on multifactor logistic regression,and the model performance was assessed using receiver operating characteristic curve,calibration curve,Hosmer-Lemeshow test,and decision curve analysis.The risk scores of the two groups were calculated and compared to validate the model.RESULTS More patients in the experimental group were≥60 years old,male,and had a history of hypertension,laparotomy,and hypoproteinemia,compared to the control group.Multiple logistic regression analysis confirmed the following as independent risk factors for unplanned reoperation(P<0.05):Prognostic Nutritional Index value,history of laparotomy,hypertension,or stroke,hypoproteinemia,age,tumor-node-metastasis staging,surgical time,gender,and American Society of Anesthesiologists classification.Receiver operating characteristic curve analysis showed that the model had good discrimination and clinical utility.CONCLUSION This study used a machine learning approach to build a model that accurately predicts the risk of postoperative unplanned reoperation in patients with colorectal cancer,which can improve treatment decisions and prognosis.
文摘Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a particular geographic region or location, also known as geo-spatial data or geographic information. Focusing on spatial heterogeneity, we present a hybrid machine learning model combining two competitive algorithms: the Random Forest Regressor and CNN. The model is fine-tuned using cross validation for hyper-parameter adjustment and performance evaluation, ensuring robustness and generalization. Our approach integrates Global Moran’s I for examining global autocorrelation, and local Moran’s I for assessing local spatial autocorrelation in the residuals. To validate our approach, we implemented the hybrid model on a real-world dataset and compared its performance with that of the traditional machine learning models. Results indicate superior performance with an R-squared of 0.90, outperforming RF 0.84 and CNN 0.74. This study contributed to a detailed understanding of spatial variations in data considering the geographical information (Longitude & Latitude) present in the dataset. Our results, also assessed using the Root Mean Squared Error (RMSE), indicated that the hybrid yielded lower errors, showing a deviation of 53.65% from the RF model and 63.24% from the CNN model. Additionally, the global Moran’s I index was observed to be 0.10. This study underscores that the hybrid was able to predict correctly the house prices both in clusters and in dispersed areas.
文摘The use of traditional herbal drugs derived from natural sources is on the rise due to their minimal side effects and numerous health benefits.However,a major limitation is the lack of standardized knowledge for identifying and mapping the quality of these herbal medicines.This article aims to provide practical insights into the application of artificial intelligence for quality-based commercialization of raw herbal drugs.It focuses on feature extraction methods,image processing techniques,and the preparation of herbal images for compatibility with machine learning models.The article discusses commonly used image processing tools such as normalization,slicing,cropping,and augmentation to prepare images for artificial intelligence-based models.It also provides an overview of global herbal image databases and the models employed for herbal plant/drug identification.Readers will gain a comprehensive understanding of the potential application of various machine learning models,including artificial neural networks and convolutional neural networks.The article delves into suitable validation parameters like true positive rates,accuracy,precision,and more for the development of artificial intelligence-based identification and authentication techniques for herbal drugs.This article offers valuable insights and a conclusive platform for the further exploration of artificial intelligence in the field of herbal drugs,paving the way for smarter identification and authentication methods.
基金Project(51005086)supported by the National Natural Science Foundation of ChinaProject(2010MS085)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(DMETKF2013008)supported by the Open Project of the State Key Laboratory of Digital Manufacturing Equipment and Technology,China
文摘A layered modeling method is proposed to resolve the problems resulting from the complexity of the error model of a multi-axis motion control system. In this model, a low level layer can be used as a virtual axis by the high level layer. The first advantage of this model is that the complex error model of a four-axis motion control system can be divided into several simple layers and each layer has different coupling strength to match the real control system. The second advantage lies in the fact that the controller in each layer can be designed specifically for a certain purpose. In this research, a three-layered cross coupling scheme in a four-axis motion control system is proposed to compensate the contouring error of the motion control system. Simulation results show that the maximum contouring error is reduced from 0.208 mm to 0.022 mm and the integration of absolute error is reduced from 0.108 mm to 0.015 mm, which are respectively better than 0.027 mm and 0.037 mm by the traditional method. And in the bottom layer the proposed method also has remarkable ability to achieve high contouring accuracy.
基金Project supported by the National Natural Science Foundation of China (Grant No 60573065)the Natural Science Foundation of Shandong Province,China (Grant No Y2007G33)the Key Subject Research Foundation of Shandong Province,China(Grant No XTD0708)
文摘In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements.
基金funded by the National Natural Science Foundation of China (41807285)。
文摘The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning models have some problems,such as poor nonlinear performance,local optimum and incomplete factors feature extraction.These issues can affect the accuracy of slope stability prediction.Therefore,a deep learning algorithm called Long short-term memory(LSTM)has been innovatively proposed to predict slope stability.Taking the Ganzhou City in China as the study area,the landslide inventory and their characteristics of geotechnical parameters,slope height and slope angle are analyzed.Based on these characteristics,typical soil slopes are constructed using the Geo-Studio software.Five control factors affecting slope stability,including slope height,slope angle,internal friction angle,cohesion and volumetric weight,are selected to form different slope and construct model input variables.Then,the limit equilibrium method is used to calculate the stability coefficients of these typical soil slopes under different control factors.Each slope stability coefficient and its corresponding control factors is a slope sample.As a result,a total of 2160 training samples and 450 testing samples are constructed.These sample sets are imported into LSTM for modelling and compared with the support vector machine(SVM),random forest(RF)and convo-lutional neural network(CNN).The results show that the LSTM overcomes the problem that the commonly used machine learning models have difficulty extracting global features.Furthermore,LSTM has a better prediction performance for slope stability compared to SVM,RF and CNN models.
基金funded by the Natural Science Foundation of China(Grant Nos.41807285,41972280 and 52179103).
文摘To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method proposed by the authors promotes the application of slope units.However,LSP modeling based on these slope units has not been performed.Moreover,the heterogeneity of conditioning factors in slope units is neglected,leading to incomplete input variables of LSP modeling.In this study,the slope units extracted by the MSS method are used to construct LSP modeling,and the heterogeneity of conditioning factors is represented by the internal variations of conditioning factors within slope unit using the descriptive statistics features of mean,standard deviation and range.Thus,slope units-based machine learning models considering internal variations of conditioning factors(variant slope-machine learning)are proposed.The Chongyi County is selected as the case study and is divided into 53,055 slope units.Fifteen original slope unit-based conditioning factors are expanded to 38 slope unit-based conditioning factors through considering their internal variations.Random forest(RF)and multi-layer perceptron(MLP)machine learning models are used to construct variant Slope-RF and Slope-MLP models.Meanwhile,the Slope-RF and Slope-MLP models without considering the internal variations of conditioning factors,and conventional grid units-based machine learning(Grid-RF and MLP)models are built for comparisons through the LSP performance assessments.Results show that the variant Slopemachine learning models have higher LSP performances than Slope-machine learning models;LSP results of variant Slope-machine learning models have stronger directivity and practical application than Grid-machine learning models.It is concluded that slope units extracted by MSS method can be appropriate for LSP modeling,and the heterogeneity of conditioning factors within slope units can more comprehensively reflect the relationships between conditioning factors and landslides.The research results have important reference significance for land use and landslide prevention.
基金supported in part by the National Research Foundation of Korea(NRF)grant funded by Korea government(No.2020R1C1C1013260)in part by INHA UNIVERSITY Research Grant.
文摘This paper presents a state-of-the-art review in modeling approach of hardware in the loop simulation(HILS)realization of electric machine drives using commercial real time machines.HILS implementation using digital signal processors(DSPs)and field programmable gate array(FPGA)for electric machine drives has been investigated but those methods have drawbacks such as complexity in development and verification.Among various HILS implementation approaches,more efficient development and verification for electric machine drives can be achieved through use of commercial real time machines.As well as implementation of the HILS,accurate modeling of a control target system plays an important role.Therefore,modeling trend in electric machine drives for HILS implementation is needed to be reviewed.This paper provides a background of HILS and commercially available real time machines and characteristics of each real time machine are introduced.Also,recent trends and progress of permanent magnet synchronous machines(PMSMs)modeling are presented for providing more accurate HILS implementation approaches in this paper.
基金This project is supported by National Natural Science Foundation of China(No.50375153).
文摘Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measure well and is good at dealing with continuous dynamic signals. SVM expresses inter-class difference effectively and has perfect classify ability. This approach is built on the merit of HMM and SVM. Then, the experiment is made in the transmission system of a helicopter. With the features extracted from vibration signals in gearbox, this HMM-SVM based diagnostic approach is trained and used to monitor and diagnose the gearbox's faults. The result shows that this method is better than HMM-based and SVM-based diagnosing methods in higher diagnostic accuracy with small training samples.
基金supported by grants from the National Natural Science Foundation of China(31771243)the Fok Ying Tong Education Foundation(141113)to Aiguo Chen.
文摘In recent years evidence has emerged suggesting that Mini-basketball training program(MBTP)can be an effec-tive intervention method to improve social communication(SC)impairments and restricted and repetitive beha-viors(RRBs)in preschool children suffering from autism spectrum disorder(ASD).However,there is a considerable degree if interindividual variability concerning these social outcomes and thus not all preschool chil-dren with ASD profit from a MBTP intervention to the same extent.In order to make more accurate predictions which preschool children with ASD can benefit from an MBTP intervention or which preschool children with ASD need additional interventions to achieve behavioral improvements,further research is required.This study aimed to investigate which individual factors of preschool children with ASD can predict MBTP intervention out-comes concerning SC impairments and RRBs.Then,test the performance of machine learning models in predict-ing intervention outcomes based on these factors.Participants were 26 preschool children with ASD who enrolled in a quasi-experiment and received MBTP intervention.Baseline demographic variables(e.g.,age,body,mass index[BMI]),indicators of physicalfitness(e.g.,handgrip strength,balance performance),performance in execu-tive function,severity of ASD symptoms,level of SC impairments,and severity of RRBs were obtained to predict treatment outcomes after MBTP intervention.Machine learning models were established based on support vector machine algorithm were implemented.For comparison,we also employed multiple linear regression models in statistics.Ourfindings suggest that in preschool children with ASD symptomatic severity(r=0.712,p<0.001)and baseline SC impairments(r=0.713,p<0.001)are predictors for intervention outcomes of SC impair-ments.Furthermore,BMI(r=-0.430,p=0.028),symptomatic severity(r=0.656,p<0.001),baseline SC impair-ments(r=0.504,p=0.009)and baseline RRBs(r=0.647,p<0.001)can predict intervention outcomes of RRBs.Statistical models predicted 59.6%of variance in post-treatment SC impairments(MSE=0.455,RMSE=0.675,R2=0.596)and 58.9%of variance in post-treatment RRBs(MSE=0.464,RMSE=0.681,R2=0.589).Machine learning models predicted 83%of variance in post-treatment SC impairments(MSE=0.188,RMSE=0.434,R2=0.83)and 85.9%of variance in post-treatment RRBs(MSE=0.051,RMSE=0.226,R2=0.859),which were better than statistical models.Ourfindings suggest that baseline characteristics such as symptomatic severity of 144 IJMHP,2022,vol.24,no.2 ASD symptoms and SC impairments are important predictors determining MBTP intervention-induced improvements concerning SC impairments and RBBs.Furthermore,the current study revealed that machine learning models can successfully be applied to predict the MBTP intervention-related outcomes in preschool chil-dren with ASD,and performed better than statistical models.Ourfindings can help to inform which preschool children with ASD are most likely to benefit from an MBTP intervention,and they might provide a reference for the development of personalized intervention programs for preschool children with ASD.
基金Project supported by the National Natural Science Foundation of China(Nos.12101072 and 11421101)the National Key Research and Development Program of China(No.2018YFF0300104)+1 种基金the Beijing Municipal Science and Technology Project(No.Z201100005820002)the Open Research Fund of Shenzhen Research Institute of Big Data(No.2019ORF01001)。
文摘Fine-grained weather forecasting data,i.e.,the grid data with high-resolution,have attracted increasing attention in recent years,especially for some specific applications such as the Winter Olympic Games.Although European Centre for Medium-Range Weather Forecasts(ECMWF)provides grid prediction up to 240 hours,the coarse data are unable to meet high requirements of these major events.In this paper,we propose a method,called model residual machine learning(MRML),to generate grid prediction with high-resolution based on high-precision stations forecasting.MRML applies model output machine learning(MOML)for stations forecasting.Subsequently,MRML utilizes these forecasts to improve the quality of the grid data by fitting a machine learning(ML)model to the residuals.We demonstrate that MRML achieves high capability at diverse meteorological elements,specifically,temperature,relative humidity,and wind speed.In addition,MRML could be easily extended to other post-processing methods by invoking different techniques.In our experiments,MRML outperforms the traditional downscaling methods such as piecewise linear interpolation(PLI)on the testing data.
基金supported by the Chongqing Science and Health Joint Medical Research Project(No.8187011078).
文摘Objective:To determine the clinical characteristics and prognosis of primary tracheobronchial tumors(PTTs)in children,and to explore the most common tumor identification methods.Methods:The medical records of children with PTTs who were hospitalized at the Children's Hospital of Chongqing Medical University from January 1995 to January 2020 were reviewed retrospectively.The clinical features,imaging,treatments,and outcomes of these patients were statistically analyzed.Machine learning techniques such as Gaussian na?ve Bayes,support vector machine(SVM)and decision tree models were used to identify mucoepidermoid carcinoma(ME).Results:A total of 16 children were hospitalized with PTTs during the study period.This included 5(31.3%)children with ME,3(18.8%)children with inflammatory myofibroblastic tumors(IMT),2 children(12.5%)with sarcomas,2(12.5%)children with papillomatosis and 1 child(6.3%)each with carcinoid carcinoma,adenoid cystic carcinoma(ACC),hemangioma,and schwannoma,respectively.ME was the most common tumor type and amongst the 3 ME recognition methods,the SVM model showed the best performance.The main clinical symptoms of PPTs were cough(81.3%),breathlessness(50%),wheezing(43.8%),progressive dyspnea(37.5%),hemoptysis(37.5%),and fever(25%).Of the 16 patients,7 were treated with surgery,8 underwent bronchoscopic tumor resection,and 1 child died.Of the 11 other children,3 experienced recurrence,and the last 8 remained disease-free.No deaths were observed during the follow-up period.Conclusion:PTT are very rare in children and the highest percentage of cases is due to ME.The SVM model was highly accurate in identifying ME.Chest CT and bronchoscopy can effectively diagnose PTTs.Surgery and bronchoscopic intervention can both achieve good clinical results and the prognosis of the 11 children that were followed up was good.
基金Supported by the National Natural Science Foundation of China(21076179)the National Basic Research Program of China(2012CB720500)
文摘This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection.
基金supported by the National Natural Science Foundation of China (51075147)
文摘To study the rock deformation with three- dimensional model under rolling forces of disc cutter, by car- rying out the circular-grooving test with disc cutter rolling around on the rock, the rock mechanical behavior under rolling disc cutter is studied, the mechanical model of disc cutter rolling around the groove is established, and the the- ory of single-point and double-angle variables is proposed. Based on this theory, the physics equations and geometric equations of rock mechanical behavior under disc cutters of tunnel boring machine (TBM) are studied, and then the bal- ance equations of interactive forces between disc cutter and rock are established. Accordingly, formulas about normal force, rolling force and side force of a disc cutter are de- rived, and their validity is studied by tests. Therefore, a new method and theory is proposed to study rock- breaking mech- anism of disc cutters.
基金Supported partially by the Post Doctoral Natural Science Foundation of China(2013M532118,2015T81082)the National Natural Science Foundation of China(61573364,61273177,61503066)+2 种基金the State Key Laboratory of Synthetical Automation for Process Industriesthe National High Technology Research and Development Program of China(2015AA043802)the Scientific Research Fund of Liaoning Provincial Education Department(L2013272)
文摘Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones.
基金Supported by Shanghai Municipal Science and Technology Commission(Grant No.12JC1408700)National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant Nos.2013ZX04012-071,2011ZX04015-022)
文摘Line configuration and balancing is to select the type of line and allot a given set of operations as well as machines to a sequence of workstations to realize high-efficiency production. Most of the current researches for machining line configuration and balancing problems are related to dedicated transfer lines with dedicated machine workstations. With growing trends towards great product variety and fluctuations in market demand, dedicated transfer lines are being replaced with flexible machining line composed of identical CNC machines. This paper deals with the line configuration and balancing problem for flexible machining lines. The objective is to assign operations to workstations and find the sequence of execution, specify the number of machines in each workstation while minimizing the line cycle time and total number of machines. This problem is subject to precedence, clustering, accessibility and capacity constraints among the features, operations, setups and workstations. The mathematical model and heuristic algorithm based on feature group strategy and polychromatic sets theory are presented to find an optimal solution. The feature group strategy and polychromatic sets theory are used to establish constraint model. A heuristic operations sequencing and assignment algorithm is given. An industrial case study is carried out, and multiple optimal solutions in different line configurations are obtained. The case studying results show that the solutions with shorter cycle time and higher line balancing rate demonstrate the feasibility and effectiveness of the proposed algorithm. This research proposes a heuristic line configuration and balancing algorithm based on feature group strategy and polychromatic sets theory which is able to provide better solutions while achieving an improvement in computing time.
基金funded by the National Natural Science Foundation of China(NFSC)(No.52072011)。
文摘The exhaust emissions and frequent traffic incidents caused by traffic congestion have affected the operation and development of urban transport systems.Monitoring and accurately forecasting urban traffic operation is a critical task to formulate pertinent strategies to alleviate traffic congestion.Compared with traditional short-time traffic prediction,this study proposes a machine learning algorithm-based traffic forecasting model for daily-level peak hour traffic operation status prediction by using abundant historical data of urban traffic performance index(TPI).The study also constructed a multi-dimensional influencing factor set to further investigate the relationship between different factors on the quality of road network operation,including day of week,time period,public holiday,car usage restriction policy,special events,etc.Based on long-term historical TPI data,this research proposed a daily dimensional road network TPI prediction model by using an extreme gradient boosting algorithm(XGBoost).The model validation results show that the model prediction accuracy can reach higher than 90%.Compared with other prediction models,including Bayesian Ridge,Linear Regression,ElatsicNet,SVR,the XGBoost model has a better performance,and proves its superiority in large high-dimensional data sets.The daily dimensional prediction model proposed in this paper has an important application value for predicting traffic status and improving the operation quality of urban road networks.