The Sichuan-Tibet transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on dif...The Sichuan-Tibet transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on different engineering structures,their combined effect remains unclear.This research employed multiple physical model tests to investigate the dynamic response of various engineering structures,including tunnels,bridges,and embankments,under the simultaneous influence of cumulative earthquakes and stick-slip misalignment of an active fault.The prototype selected for this study was the Kanding No.2 tunnel,which crosses the Yunongxi fault zone within the Sichuan-Tibet transportation corridor.The results demonstrated that the tunnel,bridge,and embankment exhibited amplification in response to the input seismic wave,with the amplification effect gradually decreasing as the input peak ground acceleration(PGA)increased.The PGAs of different engineering structures were weakened by the fault rupture zone.Nevertheless,the misalignment of the active fault may decrease the overall stiffness of the engineering structure,leading to more severe damage,with a small contribution from seismic vibration.Additionally,the seismic vibration effect might be enlarged with the height of the engineering structure,and the tunnel is supposed to have a smaller PGA and lower dynamic earth pressure compared to bridges and embankments in strong earthquake zones crossing active faults.The findings contribute valuable insights for evaluating the dynamic response of various engineering structures crossing an active fault and provide an experimental reference for secure engineering design in the challenging conditions of the Sichuan-Tibet transportation corridor.展开更多
A test rig is built to model the dynamic response of submarine pipelines with an underwater shaking table in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China. Model ...A test rig is built to model the dynamic response of submarine pipelines with an underwater shaking table in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China. Model tests are carried out to consider the effects of exciting wave directions and types. Based on the experimental results, two hydrodynamic force models derived from Morisen equation and Wake model are presented respectively. By use of hydrodynamic force models suitable for free spanning submarine pipelines under earthquakes, diseretized equations of motion are obtained and finite element models are established to analyze dynamic response of free spanning submarine pipeline subjected to multi-support seismic excitations. The comparison of numerical results with experimental results shows that the improved Morison and Wake hydrodynamic force models could satisfactorily predict dynamic response on the free spanning submarine pipelines subjected to earthquakes.展开更多
Mitchell's solution is commonly used to determine the required strength of vertically exposed cemented backfill in mines. Developed for drained backfill, Mitchell model assumed a zero friction angle for the backfi...Mitchell's solution is commonly used to determine the required strength of vertically exposed cemented backfill in mines. Developed for drained backfill, Mitchell model assumed a zero friction angle for the backfill. Physical model tests were performed. Good agreements were obtained between the required strengths predicted by the analytical solution and experimental results. However, it is well-known that zero friction angle can only be possible in terms of total stresses when geomaterials are submitted to unconsolidated and undrained conditions. A revisit to Mitchell's physical model tests reveals that both the laboratory tests performed for obtaining the shear strength parameters of the cemented backfill and the box stability tests were conducted under a condition close to undrained condition. This explains well the good agreement between Mitchell's solution and experimental results. Good agreements are equally obtained between Mitchell's experimental results and FLAC3 D numerical modeling of shortterm stability analyses of exposed cemented backfill.展开更多
The pile, as an important foundation style, is being used in engineering practice. Defects of different types and damages of different degrees easily occur during the process of pile construction. So, dietecting defec...The pile, as an important foundation style, is being used in engineering practice. Defects of different types and damages of different degrees easily occur during the process of pile construction. So, dietecting defects of the pile is very important. As so far, there are some difficult problems in pile defect detection. Based on stress wave theory, some of these typical difficult problems were studied through model tests. The analyses of the test results are carried out and some significant results of the low-strain method are obtained, when a pile has a gradually-decreasing crosssection part, the amplitude of the reflective signal originating from the defect is dependent on the decreasing value of the rate of crosssection β. No apparent signal reflected from the necking appeares on the velocity response curve when the value of β is less than about 3. 5 %.展开更多
Automatically formed roadway(AFR)by roof cutting with bolt grouting(RCBG)is a new deep coal mining technology.By using this technology,the broken roadway roof is strengthened,and roof cutting is applied to cut off str...Automatically formed roadway(AFR)by roof cutting with bolt grouting(RCBG)is a new deep coal mining technology.By using this technology,the broken roadway roof is strengthened,and roof cutting is applied to cut off stress transfer between the roadway and gob to ensure the collapse of the overlying strata.The roadway is automatically formed owing to the broken expansion characteristics of the collapsed strata and mining pressure.Taking the Suncun Coal Mine as the engineering background,the control effect of this new technology on roadways was studied.To compare the law of stress evolution and the surrounding rock control mechanisms between AFR and traditional gob-side entry driving,a comparative study of geomechanical model tests on the above methods was carried out.The results showed that the new technology of AFR by RCBG effectively reduced the stress concentration of the roadway compared with gob-side entry driving.The side abutment pressure peak of the solid coal side was reduced by 24.3%,which showed an obvious pressure-releasing effect.Moreover,the position of the side abutment pressure peak was far from the solid coal side,making it more beneficial for roadway stability.The deformation of AFR surrounding rock was also smaller than the deformation of the gob-side entry driving by the overload test.The former was more beneficial for roadway stability than the latter under higher stress conditions.Field application tests showed that the new technology can effectively control roadway deformation.Moreover,the technology reduced roadway excavation and avoided resource waste caused by reserved coal pillars.展开更多
The application of the vertical hoisting jack and wave motion compensation techniques to the salvage of an ancient sunken boat is introduced. The boat is wooden, loaded with cultural relics. It has been immersed at th...The application of the vertical hoisting jack and wave motion compensation techniques to the salvage of an ancient sunken boat is introduced. The boat is wooden, loaded with cultural relics. It has been immersed at the bottom of the South China Sea for more than 800 years. In order to protect the structure of the boat and the cultural relics inside to the largest extent, an open caisson is used to hold the sunken beat and the silts around before they are raised from the seabed all together as a whole. In the paper, first, the seakeeping model test of the system of the salvage barge and the open caisson is done to determine some important wave response parameters. And then a further experimental study of the ap- plication of the vertical hoisting jack and wave motion compensation scheme to the salvage of the sunken boat is carried out. In the model tests, the techniques of the integrative mechanic-electronic-hydraulic control, wave motion forecast and wave motion compensation are used to minimize the heave motion of the open caisson. The results of the model tests show that the heave motion of the open caisson can be reduced effectively by the use of the present method.展开更多
Piles are generally an effective way to reduce the risk of slope failure.However,previous approaches for slope stability analysis did not consider the effect of the piles coupled with the decrease of the water level(d...Piles are generally an effective way to reduce the risk of slope failure.However,previous approaches for slope stability analysis did not consider the effect of the piles coupled with the decrease of the water level(drawdown).In this study,a series of centrifuge model tests was performed to understand the deformation and failure characteristics of slopes reinforced with various pile layouts.In the centrifuge model tests,the pile-reinforced slopes exhibited two typical failure modes under drawdown conditions:across-pile failure and through-pile failure.In the through-pile slope failure,a discontinuous slip surface was observed,implying that the assumption of the slip surface in previous stability analysis methods was unreasonable.The test results showed that drawdown led to instability of the piles in cohesive soil,as the saturated cohesive soil failed to provide sufficient constraint for piles.The slope exhibited progressive failure,from top to bottom,during drawdown.The deformation of the piles was reduced by increasing the embedment depth and row number of piles.In addition,the deformation of soils outside the piles was influenced by the piles and showed a similar distribution shape as the piles,and the similarity degree weakened as the distance from the piles increased.This study also found that the failure mechanism of unreinforced and pile-reinforced slopes induced by drawdown could be described by coupling between the deformation localization and local failure,and it revealed that pile-reinforced slopes could reduce slope deformation localization during drawdown.展开更多
Piled embankments,which offer many advantages,are increasingly popular in construction of high-speed railways in China.Although the performance of piled embankment under static loading is well-known,the behavior under...Piled embankments,which offer many advantages,are increasingly popular in construction of high-speed railways in China.Although the performance of piled embankment under static loading is well-known,the behavior under the dynamic train load of a high-speed railway is not yet understood.In light of this,a heavily instrumented piled embankment model was set up,and a model test was carried out,in which a servo-hydraulic actuator outputting M-shaped waves was adopted to simulate the process of a running train.Earth pressure,settlement,strain in the geogrid and pile and excess pore water pressure were measured.The results show that the soil arching height under the dynamic train load of a high-speed railway is shorter than under static loading.The growth trend for accumulated settlement slowed down after long-term vibration although there was still a tendency for it to increase.Accumulated geogrid strain has an increasing tendency after long-term vibration.The closer the embankment edge,the greater the geogrid strain over the subsoil.Strains in the pile were smaller under dynamic train loads,and their distribution was different from that under static loading.At the same elevation,excess pore water pressure under the track slab was greater than that under the embankment shoulder.展开更多
Analyzing the dynamic response and calculating the tendon tension of the mooring system are necessary for the structural design of a tension leg platform (TLP). The six-degree-of-freedom dynamic coupling responses a...Analyzing the dynamic response and calculating the tendon tension of the mooring system are necessary for the structural design of a tension leg platform (TLP). The six-degree-of-freedom dynamic coupling responses and the mooring characteristics of TLP under random waves are studied by using a self-developed program. Results are verified by the 1:40 scaling factor model test conducted in the State Key Laboratory of Ocean Engineering at Shanghai JiaoTong University. The mean, range, and standard deviation of the numerical simulation and model test are compared. The influences of different sea states and wave approach angles on the dynamic response and tendon tension of the mooring system are investigated. The acceleration in the center and corner of the deck is forecasted.展开更多
For a study of the movement and deformation of coal-rock mass and low protected seams below a stope,as well as for fracture developments and rules of evolution of permeability,we designed a plane strain model test sta...For a study of the movement and deformation of coal-rock mass and low protected seams below a stope,as well as for fracture developments and rules of evolution of permeability,we designed a plane strain model test stand to carry out model tests of similar materials in order to improve the effect of gas drainage from low protected seams and to measure the movement and deformation of coal-rock mass using a method of non-contact close-range photogrammetry.Our results show that 1) using paraffin melting to take the place of coal seam mining can satisfy the mining conditions of a protective seam;2) coal-rock mass under goafs has an upward movement after the protective seam has been mined,causing floor heaving;3) low protected seams become swollen and deformed,providing a good pressure-relief effect and causing the coal-rock mass under both sides of coal pillars to become deformed by compression and 4) the evolution of permeability of low protected seams follows the way of initial values→a slight decrease→a great increase→stability→final decrease.Simultaneously,the coefficient of air permeability increased at a decreasing rate with an increase in interlayer spacing.展开更多
In this study,the Jinzhou 9-3 CEPD float-over installation project was investigated.During the undocking condition,the water depth of the motion path of the working barge gradually changed from 10.31 m to 9.41 m.The u...In this study,the Jinzhou 9-3 CEPD float-over installation project was investigated.During the undocking condition,the water depth of the motion path of the working barge gradually changed from 10.31 m to 9.41 m.The undocking clearance of the HYSY 228 is smaller than 1 m;therefore,the barge shows highly nonlinear hydrodynamic characteristics,and it is difficult to be accurately simulated by numerical analysis.Thus,it is necessary to obtain the hydrodynamic characteristics and laws of the float-over barge at different water depths by using tank model test,to provide some reference and guidance for float-over operations in shallow water.展开更多
Tunnel excavation is a complicated loading-unloading-reloading process characterized by decreased radial stresses and increased axial stresses.An approach that considers only loading,is generally used in tunnel model ...Tunnel excavation is a complicated loading-unloading-reloading process characterized by decreased radial stresses and increased axial stresses.An approach that considers only loading,is generally used in tunnel model testing.However,this approach is incapable of characterizing the unloading effects induced by excavation on surrounding rocks and hence presents radial and tangential stress paths during the failure process that are different from the actual stress state of tunnels.This paper carried out a comparative analysis using laboratory model testing and particle flow code(PFC2D)-based numerical simulation,and shed light upon the crack propagation process and,microscopic stress and force chain variations during the loading-unloading process.The failure mode observed in the unloading model test is shear failure.The force chains are strongly correlated with the concrete fracture propagation.In addition,the change patterns of the radial and tangential stresses of surrounding rocks in the broken region,as well as the influence of the initial stress on failure loads are revealed.The surrounding soil of tunnel failure evolution as well as extent and shape of the damage zone during the excavation-induced unloading were also studied.展开更多
To optimize the distance between the bells in pile design,this paper reports a series of small scale tests on the uplift capacity of double belled piles embedded in dry dense sand considering different bell space rati...To optimize the distance between the bells in pile design,this paper reports a series of small scale tests on the uplift capacity of double belled piles embedded in dry dense sand considering different bell space ratios.Finite element modelling is also performed to evaluate the range of soil failure around the piles during pile uplift displacement.Test results show that when bell space ratio is 6 or 8,the uplift capacity reaches the peak value.The upper bell bears more load than the lower one for the piles with bell space ratio less than 6,while the lower bell bears more load than the upper one for the piles with bell space ratio larger than 8.展开更多
Outbursts of methane and rocks are, similarly to rock bursts, the biggest hazards in deep mines and are equally difficult to predict. The violent process of the outburst itself, along with the scale and range of hazar...Outbursts of methane and rocks are, similarly to rock bursts, the biggest hazards in deep mines and are equally difficult to predict. The violent process of the outburst itself, along with the scale and range of hazards following the rapid discharge of gas and rocks, requires solutions which would enable quick and unambiguous detection of the hazard, immediate power supply cut-off and evacuation of personnel from potentially hazardous areas. For this purpose, an integrated outburst detector was developed. Assumed functions of the sensor which was equipped with three measuring and detection elements: a chamber for constant measurement of methane concentration, pressure sensor and microphone. Tests of the sensor model were carried out to estimate the parameters which characterize the dynamic properties of the sensor. Given the impossibility of carrying out the full scale experimental outburst, the sensor was tested during the methane and coal dust explosions in the testing gallery at KD Barbara. The obtained results proved that the applied solutions have been appropriate.展开更多
Full-scale model tests were carried out on a 30 m span prestressed concrete box girder and a 20 m span prestressed concrete hollow slab. Failure models were prestressed reinforcement tensile failure and crashing of ro...Full-scale model tests were carried out on a 30 m span prestressed concrete box girder and a 20 m span prestressed concrete hollow slab. Failure models were prestressed reinforcement tensile failure and crashing of roof concrete, respectively. The ductility indexes of the box girder and hollow slab were 1.99 and 1.23, respectively, according to the energy viewpoint. Based on the horizontal section hypothesis, the nonlinear computation procedure was established using the limited banding law, and it could carry out the entire performance analysis including the unloading, mainly focusing on the ways to achieve the unloading curves computation through stress-strain, moment-curvature and load-displacement curves. Through the procedure, parameters that influence on the bearing capacity, deformation performance and ductility of the structures were analyzed. Those parameters were quantity of prestressed reinforcement and tension coefficients of prestressed reinforcement. From the analysis, some useful conclusions can be obtained.展开更多
Settlement control of high-speed railways is a key technology in embankment engineering. In order to reveal the engineering characteristics of the deep, completely decomposed granite soil in the Hainan East Ring Railw...Settlement control of high-speed railways is a key technology in embankment engineering. In order to reveal the engineering characteristics of the deep, completely decomposed granite soil in the Hainan East Ring Railway, four groups of centrifuge model tests were conducted. We studied the settlement properties, under the embankment action, of untreated subsoil, subsoil treated by dynamic compaction, and subsoil reinforced with cement-mixed piles. In particular, we examined the relationship between settlement and time, including the settlement during and after construction. The results show that the Weibull model can describe the relationship between embankment settlement and time well, and that the post-construction settlements of the subsoil meet the requirements of the relevant code. Among the two foundation treatment measures, dynamic compaction is more effective than reinforcement with cement-mixed piles. The tested pressure on the contact surface between embankment and subsoil was obviously different from the commonly used calculated values.展开更多
This paper presents the explosion cratering effects and their propagation laws of blast waves in dry standard sands using a 450 g-t geotechnical centrifuge apparatus.Ten centrifuge model tests were completed with vari...This paper presents the explosion cratering effects and their propagation laws of blast waves in dry standard sands using a 450 g-t geotechnical centrifuge apparatus.Ten centrifuge model tests were completed with various ranges of explosive mass,burial depth and centrifuge accelerations.Eleven accelerometers were installed to record the acceleration response in sand.The dimensions of the explosion craters were measured after the tests.The results demonstrated that the relationship between the dimensionless parameters of cratering efficiency and gravity scaled yield is a power regression function.Three specific function equations were obtained.The results are in general agreement with those obtained by other studies.A scaling law based on the combination of the π terms was used to fit the results of the ten model tests with a correlation coefficient of 0.931.The relationship can be conveniently used to predict the cratering effects in sand.The results also showed that the peak acceleration is a power increasing function of the acceleration level.An empirical exponent relation between the proportional peak acceleration and distance is proposed.The propagation velocity of blast waves is found to be ranged between 200 and 714 m/s.展开更多
Ships sailing in shallow and/or confined water(when calling a harbour or other berthing areas),will experience a different behaviour due to the interaction with vertical and/or horizontal boundaries.Among other hydrod...Ships sailing in shallow and/or confined water(when calling a harbour or other berthing areas),will experience a different behaviour due to the interaction with vertical and/or horizontal boundaries.Among other hydrodynamic changes induced in confined water,the lateral ship-bank interaction force changes its sign at a critical distance between ship and bank or bottom.However,this distance and its effects on model test results have not been quantified in the past.To investigate the shallow water hydrodynamics coupled with bank effects,systematic model tests were carried out at Flanders Hydraulics Research(FHR)with different ship models.The following parameters were systematically varied:water depth,lateral position,speed,and propeller rate.The change of the ship-bank induced lateral force from an attraction force in medium-deep and shallow water to a repulsion force in extremely shallow water conditions,can be ascribed to the interaction of the boundary layers of the ship model and the environment(tank and installed banks).In this article,a mathematical model is proposed for the critical distance in terms of boundary layer influence thickness.This indicates the range where the model tests are influenced by the horizontal or vertical restrictions combined with the propeller’s dynamic effects.Moreover,the expression has also been extended to describe the relationship between full-scale ship length and water depth with the boundary layer influence thickness.Due to lower Reynolds numbers and relatively thicker boundary layers at model scale,upscaling of the model test results,according to Froude’s law,may provide erroneous results.The influence of the boundary layer initiates at a relatively higher under keel clearance(UKC)for a smaller ship model compared with a larger ship model.Therefore,the boundary layer’s influence with respect to ship model length should be considered during model testing.展开更多
Based on the centrifugal model tests on railway embankments of expansive soil in Nanning Kunming railway,the author studied several embankments under different physical conditions. The stress and strain states and s...Based on the centrifugal model tests on railway embankments of expansive soil in Nanning Kunming railway,the author studied several embankments under different physical conditions. The stress and strain states and settlement of the embankments were analyzed, and the obtained results can be used as a reference to field construction.展开更多
Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing c...Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing capacity attenuation.This paper presents a semi-analytical solution for predicting the axial cyclic behavior of piles in sands.The solution relies on two enhanced nonlinear load-transfer models considering stress-strain hysteresis and cyclic degradation in the pile-soil interaction.Model parameters are calibrated through cyclic shear tests of the sand-steel interface and laboratory geotechnical testing of sands.A novel aspect involves the meticulous formulation of the shaft loadtransfer function using an interface constitutive model,which inherently inherits the interface model’s advantages,such as capturing hysteresis,hardening,degradation,and particle breakage.The semi-analytical solution is computed numerically using the matrix displacement method,and the calculated values are validated through model tests performed on non-displacement and displacement piles in sands.The results demonstrate that the predicted values show excellent agreement with the measured values for both the static and cyclic responses of piles in sands.The displacement pile response,including factors such as bearing capacity,mobilized shaft resistance,and convergence rate of permanent settlement,exhibit improvements compared to non-displacement piles attributed to the soil squeezing effect.This methodology presents an innovative analytical framework,allowing for integrating cyclic interface models into the theoretical investigation of pile responses.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41825018,41977248,42207219)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0904)。
文摘The Sichuan-Tibet transportation corridor is prone to numerous active faults and frequent strong earthquakes.While extensive studies have individually explored the effect of active faults and strong earthquakes on different engineering structures,their combined effect remains unclear.This research employed multiple physical model tests to investigate the dynamic response of various engineering structures,including tunnels,bridges,and embankments,under the simultaneous influence of cumulative earthquakes and stick-slip misalignment of an active fault.The prototype selected for this study was the Kanding No.2 tunnel,which crosses the Yunongxi fault zone within the Sichuan-Tibet transportation corridor.The results demonstrated that the tunnel,bridge,and embankment exhibited amplification in response to the input seismic wave,with the amplification effect gradually decreasing as the input peak ground acceleration(PGA)increased.The PGAs of different engineering structures were weakened by the fault rupture zone.Nevertheless,the misalignment of the active fault may decrease the overall stiffness of the engineering structure,leading to more severe damage,with a small contribution from seismic vibration.Additionally,the seismic vibration effect might be enlarged with the height of the engineering structure,and the tunnel is supposed to have a smaller PGA and lower dynamic earth pressure compared to bridges and embankments in strong earthquake zones crossing active faults.The findings contribute valuable insights for evaluating the dynamic response of various engineering structures crossing an active fault and provide an experimental reference for secure engineering design in the challenging conditions of the Sichuan-Tibet transportation corridor.
基金supported jointly by the National Natural Science Foundation of China and Korea Scienceand Engineering Foundation(Grant No.50811140341)
文摘A test rig is built to model the dynamic response of submarine pipelines with an underwater shaking table in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China. Model tests are carried out to consider the effects of exciting wave directions and types. Based on the experimental results, two hydrodynamic force models derived from Morisen equation and Wake model are presented respectively. By use of hydrodynamic force models suitable for free spanning submarine pipelines under earthquakes, diseretized equations of motion are obtained and finite element models are established to analyze dynamic response of free spanning submarine pipeline subjected to multi-support seismic excitations. The comparison of numerical results with experimental results shows that the improved Morison and Wake hydrodynamic force models could satisfactorily predict dynamic response on the free spanning submarine pipelines subjected to earthquakes.
基金financial support from China Scholarship Council(CSC)under the Grant CSC No.201406460041financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC 402318)+4 种基金the Institut de Recherche Robert-Sauvéen Santéet en Sécuritédu Travail(IRSST 2013-0029)Fonds de Recherche du Québec-Nature et Technologies(FRQNT 2015-MI-191676)the industrial partners of Research Institute on Mines and Environment(RIME UQAT-Polytechnique)The financial support from the National Science and Technology Support Program of China(No.2013BAB02B02)the Scientific Research Fund of Beijing General Research Institute of Mining and Metallurgy of China(No.YJ201507)
文摘Mitchell's solution is commonly used to determine the required strength of vertically exposed cemented backfill in mines. Developed for drained backfill, Mitchell model assumed a zero friction angle for the backfill. Physical model tests were performed. Good agreements were obtained between the required strengths predicted by the analytical solution and experimental results. However, it is well-known that zero friction angle can only be possible in terms of total stresses when geomaterials are submitted to unconsolidated and undrained conditions. A revisit to Mitchell's physical model tests reveals that both the laboratory tests performed for obtaining the shear strength parameters of the cemented backfill and the box stability tests were conducted under a condition close to undrained condition. This explains well the good agreement between Mitchell's solution and experimental results. Good agreements are equally obtained between Mitchell's experimental results and FLAC3 D numerical modeling of shortterm stability analyses of exposed cemented backfill.
文摘The pile, as an important foundation style, is being used in engineering practice. Defects of different types and damages of different degrees easily occur during the process of pile construction. So, dietecting defects of the pile is very important. As so far, there are some difficult problems in pile defect detection. Based on stress wave theory, some of these typical difficult problems were studied through model tests. The analyses of the test results are carried out and some significant results of the low-strain method are obtained, when a pile has a gradually-decreasing crosssection part, the amplitude of the reflective signal originating from the defect is dependent on the decreasing value of the rate of crosssection β. No apparent signal reflected from the necking appeares on the velocity response curve when the value of β is less than about 3. 5 %.
基金This work was supported by the National Natural Science Foundation of China(Nos.51874188,52074164,42077267,and 51927807)the Natural Science Foundation of Shandong Province,China(Nos.2019SDZY04 and ZR2020JQ23)the Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program,China(No.2019KJG013).
文摘Automatically formed roadway(AFR)by roof cutting with bolt grouting(RCBG)is a new deep coal mining technology.By using this technology,the broken roadway roof is strengthened,and roof cutting is applied to cut off stress transfer between the roadway and gob to ensure the collapse of the overlying strata.The roadway is automatically formed owing to the broken expansion characteristics of the collapsed strata and mining pressure.Taking the Suncun Coal Mine as the engineering background,the control effect of this new technology on roadways was studied.To compare the law of stress evolution and the surrounding rock control mechanisms between AFR and traditional gob-side entry driving,a comparative study of geomechanical model tests on the above methods was carried out.The results showed that the new technology of AFR by RCBG effectively reduced the stress concentration of the roadway compared with gob-side entry driving.The side abutment pressure peak of the solid coal side was reduced by 24.3%,which showed an obvious pressure-releasing effect.Moreover,the position of the side abutment pressure peak was far from the solid coal side,making it more beneficial for roadway stability.The deformation of AFR surrounding rock was also smaller than the deformation of the gob-side entry driving by the overload test.The former was more beneficial for roadway stability than the latter under higher stress conditions.Field application tests showed that the new technology can effectively control roadway deformation.Moreover,the technology reduced roadway excavation and avoided resource waste caused by reserved coal pillars.
文摘The application of the vertical hoisting jack and wave motion compensation techniques to the salvage of an ancient sunken boat is introduced. The boat is wooden, loaded with cultural relics. It has been immersed at the bottom of the South China Sea for more than 800 years. In order to protect the structure of the boat and the cultural relics inside to the largest extent, an open caisson is used to hold the sunken beat and the silts around before they are raised from the seabed all together as a whole. In the paper, first, the seakeeping model test of the system of the salvage barge and the open caisson is done to determine some important wave response parameters. And then a further experimental study of the ap- plication of the vertical hoisting jack and wave motion compensation scheme to the salvage of the sunken boat is carried out. In the model tests, the techniques of the integrative mechanic-electronic-hydraulic control, wave motion forecast and wave motion compensation are used to minimize the heave motion of the open caisson. The results of the model tests show that the heave motion of the open caisson can be reduced effectively by the use of the present method.
基金The study is supported by the National Key R&D Program of China(Grant No.2018YFC1508503)the Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering,Tsinghua University(Grant No.sklhse-2020-D-03),which are greatly acknowledged.
文摘Piles are generally an effective way to reduce the risk of slope failure.However,previous approaches for slope stability analysis did not consider the effect of the piles coupled with the decrease of the water level(drawdown).In this study,a series of centrifuge model tests was performed to understand the deformation and failure characteristics of slopes reinforced with various pile layouts.In the centrifuge model tests,the pile-reinforced slopes exhibited two typical failure modes under drawdown conditions:across-pile failure and through-pile failure.In the through-pile slope failure,a discontinuous slip surface was observed,implying that the assumption of the slip surface in previous stability analysis methods was unreasonable.The test results showed that drawdown led to instability of the piles in cohesive soil,as the saturated cohesive soil failed to provide sufficient constraint for piles.The slope exhibited progressive failure,from top to bottom,during drawdown.The deformation of the piles was reduced by increasing the embedment depth and row number of piles.In addition,the deformation of soils outside the piles was influenced by the piles and showed a similar distribution shape as the piles,and the similarity degree weakened as the distance from the piles increased.This study also found that the failure mechanism of unreinforced and pile-reinforced slopes induced by drawdown could be described by coupling between the deformation localization and local failure,and it revealed that pile-reinforced slopes could reduce slope deformation localization during drawdown.
基金National Natural Science Foundation of China under Grant Nos.51622803,51378177 and 51420105013the 111 Project under Grant No.B13024
文摘Piled embankments,which offer many advantages,are increasingly popular in construction of high-speed railways in China.Although the performance of piled embankment under static loading is well-known,the behavior under the dynamic train load of a high-speed railway is not yet understood.In light of this,a heavily instrumented piled embankment model was set up,and a model test was carried out,in which a servo-hydraulic actuator outputting M-shaped waves was adopted to simulate the process of a running train.Earth pressure,settlement,strain in the geogrid and pile and excess pore water pressure were measured.The results show that the soil arching height under the dynamic train load of a high-speed railway is shorter than under static loading.The growth trend for accumulated settlement slowed down after long-term vibration although there was still a tendency for it to increase.Accumulated geogrid strain has an increasing tendency after long-term vibration.The closer the embankment edge,the greater the geogrid strain over the subsoil.Strains in the pile were smaller under dynamic train loads,and their distribution was different from that under static loading.At the same elevation,excess pore water pressure under the track slab was greater than that under the embankment shoulder.
基金supported by the National Natural Science Foundation of China(Grant Nos.40906049 and 51309123)
文摘Analyzing the dynamic response and calculating the tendon tension of the mooring system are necessary for the structural design of a tension leg platform (TLP). The six-degree-of-freedom dynamic coupling responses and the mooring characteristics of TLP under random waves are studied by using a self-developed program. Results are verified by the 1:40 scaling factor model test conducted in the State Key Laboratory of Ocean Engineering at Shanghai JiaoTong University. The mean, range, and standard deviation of the numerical simulation and model test are compared. The influences of different sea states and wave approach angles on the dynamic response and tendon tension of the mooring system are investigated. The acceleration in the center and corner of the deck is forecasted.
基金the Major Programs of the National Basic Research Program of China (No.2005CB221503)the National Natural Science Foundation of China (Nos. 70533050 and 50674089) for their support of this project
文摘For a study of the movement and deformation of coal-rock mass and low protected seams below a stope,as well as for fracture developments and rules of evolution of permeability,we designed a plane strain model test stand to carry out model tests of similar materials in order to improve the effect of gas drainage from low protected seams and to measure the movement and deformation of coal-rock mass using a method of non-contact close-range photogrammetry.Our results show that 1) using paraffin melting to take the place of coal seam mining can satisfy the mining conditions of a protective seam;2) coal-rock mass under goafs has an upward movement after the protective seam has been mined,causing floor heaving;3) low protected seams become swollen and deformed,providing a good pressure-relief effect and causing the coal-rock mass under both sides of coal pillars to become deformed by compression and 4) the evolution of permeability of low protected seams follows the way of initial values→a slight decrease→a great increase→stability→final decrease.Simultaneously,the coefficient of air permeability increased at a decreasing rate with an increase in interlayer spacing.
文摘In this study,the Jinzhou 9-3 CEPD float-over installation project was investigated.During the undocking condition,the water depth of the motion path of the working barge gradually changed from 10.31 m to 9.41 m.The undocking clearance of the HYSY 228 is smaller than 1 m;therefore,the barge shows highly nonlinear hydrodynamic characteristics,and it is difficult to be accurately simulated by numerical analysis.Thus,it is necessary to obtain the hydrodynamic characteristics and laws of the float-over barge at different water depths by using tank model test,to provide some reference and guidance for float-over operations in shallow water.
基金the support by the National Natural Science Foundation of China(No.51608071)Natural Science Foundation of Chongqing,China(cstc2018jcyjAX0632)+1 种基金General Financial Grant from the China Postdoctoral Science Foundation(Grant No.2017M620414)the Special Funding for Post-doctoral Researchers in Chongqing(No.Xm2017007).
文摘Tunnel excavation is a complicated loading-unloading-reloading process characterized by decreased radial stresses and increased axial stresses.An approach that considers only loading,is generally used in tunnel model testing.However,this approach is incapable of characterizing the unloading effects induced by excavation on surrounding rocks and hence presents radial and tangential stress paths during the failure process that are different from the actual stress state of tunnels.This paper carried out a comparative analysis using laboratory model testing and particle flow code(PFC2D)-based numerical simulation,and shed light upon the crack propagation process and,microscopic stress and force chain variations during the loading-unloading process.The failure mode observed in the unloading model test is shear failure.The force chains are strongly correlated with the concrete fracture propagation.In addition,the change patterns of the radial and tangential stresses of surrounding rocks in the broken region,as well as the influence of the initial stress on failure loads are revealed.The surrounding soil of tunnel failure evolution as well as extent and shape of the damage zone during the excavation-induced unloading were also studied.
基金Project(51778346) supported by the National Natural Science Foundation of ChinaProject(2019GSF111007) supported by the Key Research and Development Project of Shandong Province of China+1 种基金Project(ZR201808040034) supported by the Natural Science Foundation of Shandong Province of ChinaProject(2015RCJJ010) supported by the Talent Introduction Research Start-up Fund Project of Shandong University of Science and Technology,China。
文摘To optimize the distance between the bells in pile design,this paper reports a series of small scale tests on the uplift capacity of double belled piles embedded in dry dense sand considering different bell space ratios.Finite element modelling is also performed to evaluate the range of soil failure around the piles during pile uplift displacement.Test results show that when bell space ratio is 6 or 8,the uplift capacity reaches the peak value.The upper bell bears more load than the lower one for the piles with bell space ratio less than 6,while the lower bell bears more load than the upper one for the piles with bell space ratio larger than 8.
文摘Outbursts of methane and rocks are, similarly to rock bursts, the biggest hazards in deep mines and are equally difficult to predict. The violent process of the outburst itself, along with the scale and range of hazards following the rapid discharge of gas and rocks, requires solutions which would enable quick and unambiguous detection of the hazard, immediate power supply cut-off and evacuation of personnel from potentially hazardous areas. For this purpose, an integrated outburst detector was developed. Assumed functions of the sensor which was equipped with three measuring and detection elements: a chamber for constant measurement of methane concentration, pressure sensor and microphone. Tests of the sensor model were carried out to estimate the parameters which characterize the dynamic properties of the sensor. Given the impossibility of carrying out the full scale experimental outburst, the sensor was tested during the methane and coal dust explosions in the testing gallery at KD Barbara. The obtained results proved that the applied solutions have been appropriate.
基金National Natural Science Foundation of China(No.50678063)
文摘Full-scale model tests were carried out on a 30 m span prestressed concrete box girder and a 20 m span prestressed concrete hollow slab. Failure models were prestressed reinforcement tensile failure and crashing of roof concrete, respectively. The ductility indexes of the box girder and hollow slab were 1.99 and 1.23, respectively, according to the energy viewpoint. Based on the horizontal section hypothesis, the nonlinear computation procedure was established using the limited banding law, and it could carry out the entire performance analysis including the unloading, mainly focusing on the ways to achieve the unloading curves computation through stress-strain, moment-curvature and load-displacement curves. Through the procedure, parameters that influence on the bearing capacity, deformation performance and ductility of the structures were analyzed. Those parameters were quantity of prestressed reinforcement and tension coefficients of prestressed reinforcement. From the analysis, some useful conclusions can be obtained.
文摘Settlement control of high-speed railways is a key technology in embankment engineering. In order to reveal the engineering characteristics of the deep, completely decomposed granite soil in the Hainan East Ring Railway, four groups of centrifuge model tests were conducted. We studied the settlement properties, under the embankment action, of untreated subsoil, subsoil treated by dynamic compaction, and subsoil reinforced with cement-mixed piles. In particular, we examined the relationship between settlement and time, including the settlement during and after construction. The results show that the Weibull model can describe the relationship between embankment settlement and time well, and that the post-construction settlements of the subsoil meet the requirements of the relevant code. Among the two foundation treatment measures, dynamic compaction is more effective than reinforcement with cement-mixed piles. The tested pressure on the contact surface between embankment and subsoil was obviously different from the commonly used calculated values.
基金supported by the National Natural Science Foundation of China (No. 50779073)the Program Foundation of the China Institute of Water Resources and Hydropower Research (IWHR)(No. YANJI ZD0710)
文摘This paper presents the explosion cratering effects and their propagation laws of blast waves in dry standard sands using a 450 g-t geotechnical centrifuge apparatus.Ten centrifuge model tests were completed with various ranges of explosive mass,burial depth and centrifuge accelerations.Eleven accelerometers were installed to record the acceleration response in sand.The dimensions of the explosion craters were measured after the tests.The results demonstrated that the relationship between the dimensionless parameters of cratering efficiency and gravity scaled yield is a power regression function.Three specific function equations were obtained.The results are in general agreement with those obtained by other studies.A scaling law based on the combination of the π terms was used to fit the results of the ten model tests with a correlation coefficient of 0.931.The relationship can be conveniently used to predict the cratering effects in sand.The results also showed that the peak acceleration is a power increasing function of the acceleration level.An empirical exponent relation between the proportional peak acceleration and distance is proposed.The propagation velocity of blast waves is found to be ranged between 200 and 714 m/s.
文摘Ships sailing in shallow and/or confined water(when calling a harbour or other berthing areas),will experience a different behaviour due to the interaction with vertical and/or horizontal boundaries.Among other hydrodynamic changes induced in confined water,the lateral ship-bank interaction force changes its sign at a critical distance between ship and bank or bottom.However,this distance and its effects on model test results have not been quantified in the past.To investigate the shallow water hydrodynamics coupled with bank effects,systematic model tests were carried out at Flanders Hydraulics Research(FHR)with different ship models.The following parameters were systematically varied:water depth,lateral position,speed,and propeller rate.The change of the ship-bank induced lateral force from an attraction force in medium-deep and shallow water to a repulsion force in extremely shallow water conditions,can be ascribed to the interaction of the boundary layers of the ship model and the environment(tank and installed banks).In this article,a mathematical model is proposed for the critical distance in terms of boundary layer influence thickness.This indicates the range where the model tests are influenced by the horizontal or vertical restrictions combined with the propeller’s dynamic effects.Moreover,the expression has also been extended to describe the relationship between full-scale ship length and water depth with the boundary layer influence thickness.Due to lower Reynolds numbers and relatively thicker boundary layers at model scale,upscaling of the model test results,according to Froude’s law,may provide erroneous results.The influence of the boundary layer initiates at a relatively higher under keel clearance(UKC)for a smaller ship model compared with a larger ship model.Therefore,the boundary layer’s influence with respect to ship model length should be considered during model testing.
文摘Based on the centrifugal model tests on railway embankments of expansive soil in Nanning Kunming railway,the author studied several embankments under different physical conditions. The stress and strain states and settlement of the embankments were analyzed, and the obtained results can be used as a reference to field construction.
基金the financial support provided by the National Natural Science Foundation of China(Grant No.42272310).
文摘Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing capacity attenuation.This paper presents a semi-analytical solution for predicting the axial cyclic behavior of piles in sands.The solution relies on two enhanced nonlinear load-transfer models considering stress-strain hysteresis and cyclic degradation in the pile-soil interaction.Model parameters are calibrated through cyclic shear tests of the sand-steel interface and laboratory geotechnical testing of sands.A novel aspect involves the meticulous formulation of the shaft loadtransfer function using an interface constitutive model,which inherently inherits the interface model’s advantages,such as capturing hysteresis,hardening,degradation,and particle breakage.The semi-analytical solution is computed numerically using the matrix displacement method,and the calculated values are validated through model tests performed on non-displacement and displacement piles in sands.The results demonstrate that the predicted values show excellent agreement with the measured values for both the static and cyclic responses of piles in sands.The displacement pile response,including factors such as bearing capacity,mobilized shaft resistance,and convergence rate of permanent settlement,exhibit improvements compared to non-displacement piles attributed to the soil squeezing effect.This methodology presents an innovative analytical framework,allowing for integrating cyclic interface models into the theoretical investigation of pile responses.