期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Robust design of sliding mode control for airship trajectory tracking with uncertainty and disturbance estimation
1
作者 WASIM Muhammad ALI Ahsan +2 位作者 CHOUDHRY Mohammad Ahmad SHAIKH Inam Ul Hasan SALEEM Faisal 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期242-258,共17页
The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncer... The robotic airship can provide a promising aerostatic platform for many potential applications.These applications require a precise autonomous trajectory tracking control for airship.Airship has a nonlinear and uncertain dynamics.It is prone to wind disturbances that offer a challenge for a trajectory tracking control design.This paper addresses the airship trajectory tracking problem having time varying reference path.A lumped parameter estimation approach under model uncertainties and wind disturbances is opted against distributed parameters.It uses extended Kalman filter(EKF)for uncertainty and disturbance estimation.The estimated parameters are used by sliding mode controller(SMC)for ultimate control of airship trajectory tracking.This comprehensive algorithm,EKF based SMC(ESMC),is used as a robust solution to track airship trajectory.The proposed estimator provides the estimates of wind disturbances as well as model uncertainty due to the mass matrix variations and aerodynamic model inaccuracies.The stability and convergence of the proposed method are investigated using the Lyapunov stability analysis.The simulation results show that the proposed method efficiently tracks the desired trajectory.The method solves the stability,convergence,and chattering problem of SMC under model uncertainties and wind disturbances. 展开更多
关键词 AIRSHIP CHATTERING extended Kalman filter(EKF) model uncertainties estimation sliding mode controller(SMC)
下载PDF
Opinion: the use of natural hazard modeling for decision making under uncertainty
2
作者 David E Calkin Mike Mentis 《Forest Ecosystems》 SCIE CAS CSCD 2015年第2期139-142,共4页
Decision making to mitigate the effects of natural hazards is a complex undertaking fraught with uncertainty. Models to describe risks associated with natural hazards have proliferated in recent years. Concurrently, t... Decision making to mitigate the effects of natural hazards is a complex undertaking fraught with uncertainty. Models to describe risks associated with natural hazards have proliferated in recent years. Concurrently, there is a growing body of work focused on developing best practices for natural hazard modeling and to create structured evaluation criteria for complex environmental models. However, to our knowledge there has been less focus on the conditions where decision makers can confidently rely on results from these models. In this review we propose a preliminary set of conditions necessary for the appropriate application of modeled results to natural hazard decision making and provide relevant examples within US wildfire management programs. 展开更多
关键词 the use of natural hazard modeling for decision making under uncertainty
下载PDF
Uncertainty analysis for the calculation of marine environmental design parameters in the South China Sea
3
作者 Guilin LIU Xinsheng ZHOU +3 位作者 Yi KOU Fang WU Daniel ZHAO Yu XU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期427-443,共17页
The calculation results of marine environmental design parameters obtained from different data sampling methods,model distributions,and parameter estimation methods often vary greatly.To better analyze the uncertainti... The calculation results of marine environmental design parameters obtained from different data sampling methods,model distributions,and parameter estimation methods often vary greatly.To better analyze the uncertainties in the calculation of marine environmental design parameters,a general model uncertainty assessment method is necessary.We proposed a new multivariate model uncertainty assessment method for the calculation of marine environmental design parameters.The method divides the overall model uncertainty into two categories:aleatory uncertainty and epistemic uncertainty.The aleatory uncertainty of the model is obtained by analyzing the influence of the number and the dispersion degree of samples on the information entropy of the model.The epistemic uncertainty of the model is calculated using the information entropy of the model itself and the prediction error.The advantages of this method are that it does not require many-year-observation data for the marine environmental elements,and the method can be used to analyze any specific factors that cause model uncertainty.Results show that by applying the method to the South China Sea,the aleatory uncertainty of the model increases with the number of samples and then stabilizes.A positive correlation was revealed between the dispersion of the samples and the aleatory uncertainty of the model.Both the distribution of the model and the parameter estimation results of the model have significant effects on the epistemic uncertainty of the model.When the goodness-of-fit of the model is relatively close,the best model can be selected according to the criterion of the lowest overall uncertainty of the models,which can both ensure a better model fit and avoid too much uncertainty in the model calculation results.The presented multivariate model uncertainty assessment method provides a criterion to measure the advantages and disadvantages of the marine environmental design parameter calculation model from the aspect of uncertainty,which is of great significance to analyze the uncertainties in the calculation of marine environmental design parameters and improve the accuracy of the calculation results. 展开更多
关键词 South China Sea marine environmental design parameters model uncertainty information entropy Monte Carlo method
下载PDF
An Improved CREAM Model Based on DS Evidence Theory and DEMATEL
4
作者 Zhihui Xu Shuwen Shang +3 位作者 Yuntong Pu Xiaoyan Su Hong Qian Xiaolei Pan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2597-2617,共21页
Cognitive Reliability and Error Analysis Method(CREAM)is widely used in human reliability analysis(HRA).It defines nine common performance conditions(CPCs),which represent the factors thatmay affect human reliability ... Cognitive Reliability and Error Analysis Method(CREAM)is widely used in human reliability analysis(HRA).It defines nine common performance conditions(CPCs),which represent the factors thatmay affect human reliability and are used to modify the cognitive failure probability(CFP).However,the levels of CPCs are usually determined by domain experts,whichmay be subjective and uncertain.What’smore,the classicCREAMassumes that the CPCs are independent,which is unrealistic.Ignoring the dependence among CPCs will result in repeated calculations of the influence of the CPCs on CFP and lead to unreasonable reliability evaluation.To address the issue of uncertain information modeling and processing,this paper introduces evidence theory to evaluate the CPC levels in specific scenarios.To address the issue of dependence modeling,the Decision-Making Trial and Evaluation Laboratory(DEMATEL)method is used to process the dependence among CPCs and calculate the relative weights of each CPC,thus modifying the multiplier of the CPCs.The detailed process of the proposed method is illustrated in this paper and the CFP estimated by the proposed method is more reasonable. 展开更多
关键词 Human reliability analysis CREAM uncertainty modeling DEPENDENCE Dempster-Shafer evidence theory DEMATEL
下载PDF
Modeling and Robust Backstepping Sliding Mode Control with Adaptive RBFNN for a Novel Coaxial Eight-rotor UAV 被引量:10
5
作者 Cheng Peng Yue Bai +3 位作者 Xun Gong Qingjia Gao Changjun Zhao Yantao Tian 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期56-64,共9页
This paper focuses on the robust attitude control of a novel coaxial eight-rotor unmanned aerial vehicles(UAV) which has higher drive capability as well as greater robustness against disturbances than quad-rotor UAV. ... This paper focuses on the robust attitude control of a novel coaxial eight-rotor unmanned aerial vehicles(UAV) which has higher drive capability as well as greater robustness against disturbances than quad-rotor UAV. The dynamical and kinematical model for the coaxial eight-rotor UAV is developed, which has never been proposed before. A robust backstepping sliding mode controller(BSMC) with adaptive radial basis function neural network(RBFNN) is proposed to control the attitude of the eightrotor UAV in the presence of model uncertainties and external disturbances. The combinative method of backstepping control and sliding mode control has improved robustness and simplified design procedure benefiting from the advantages of both controllers. The adaptive RBFNN as the uncertainty observer can effectively estimate the lumped uncertainties without the knowledge of their bounds for the eight-rotor UAV. Additionally, the adaptive learning algorithm, which can learn the parameters of RBFNN online and compensate the approximation error, is derived using Lyapunov stability theorem. And then the uniformly ultimate stability of the eight-rotor system is proved. Finally, simulation results demonstrate the validity of the proposed robust control method adopted in the novel coaxial eight-rotor UAV in the case of model uncertainties and external disturbances. 展开更多
关键词 Coaxial eight-rotor UAV model uncertainties external disturbances robust backstepping sliding mode controller adaptive radial basis function neural network
下载PDF
Model Uncertainty Representation for a Convection-Allowing Ensemble Prediction System Based on CNOP-P 被引量:1
6
作者 Lu WANG Xueshun SHEN +1 位作者 Juanjuan LIU Bin WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第8期817-831,共15页
Formulating model uncertainties for a convection-allowing ensemble prediction system(CAEPS)is a much more challenging problem compared to well-utilized approaches in synoptic weather forecasting.A new approach is prop... Formulating model uncertainties for a convection-allowing ensemble prediction system(CAEPS)is a much more challenging problem compared to well-utilized approaches in synoptic weather forecasting.A new approach is proposed and tested through assuming that the model uncertainty should reasonably describe the fast nonlinear error growth of the convection-allowing model,due to the fast developing character and strong nonlinearity of convective events.The Conditional Nonlinear Optimal Perturbation related to Parameters(CNOP-P)is applied in this study.Also,an ensemble approach is adopted to solve the CNOP-P problem.By using five locally developed strong convective events that occurred in pre-rainy season of South China,the most sensitive parameters were detected based on CNOP-P,which resulted in the maximum variations in precipitation.A formulation of model uncertainty is designed by adding stochastic perturbations into these sensitive parameters.Through comparison ensemble experiments by using all the 13 heavy rainfall cases that occurred in the flood season of South China in 2017,the advantages of the CNOP-P-based method are examined and verified by comparing with the well-utilized stochastically perturbed physics tendencies(SPPT)scheme.The results indicate that the CNOP-P-based method has potential in improving the under-dispersive problem of the current CAEPS. 展开更多
关键词 CNOP-P convective scale model uncertainty ensemble forecastforecast
下载PDF
Uncertainty analysis of seawater intrusion forecasting 被引量:1
7
作者 Zhong-wei ZHAO Jian ZHAO Chang-sheng FU 《Water Science and Engineering》 EI CAS CSCD 2013年第4期380-391,共12页
In order to describe the importance of uncertainty analysis in seawater intrusion forecasting and identify the main factors that might cause great differences in prediction results, we analyzed the influence of sea le... In order to describe the importance of uncertainty analysis in seawater intrusion forecasting and identify the main factors that might cause great differences in prediction results, we analyzed the influence of sea level rise, tidal effect, the seasonal variance of influx, and the annual variance of the pumping rate, as well as combinations of different parameters. The results show that the most important factors that might cause great differences in seawater intrusion distance are the variance of pumping rate and combinations of different parameters. The influence of sea level rise can be neglected in a short-time simulation (ten years, for instance). Retardation of seawater intrusion caused by tidal effects is obviously important in aquifers near the coastline, but the influence decreases with distance away from the coastline and depth away from the seabed. The intrusion distance can reach a dynamic equilibrium with the application of the sine function for seasonal effects of influx. As a conclusion, we suggest that uncertainty analysis should be considered in seawater intrusion forecasting, if possible. 展开更多
关键词 Key words: seawater intrusion forecasting uncertainty analysis deterministic model uncertainty model factorial design
下载PDF
The estimation of lower refractivity uncertainty from radar sea clutter using the Bayesian-MCMC method 被引量:6
8
作者 盛峥 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第2期580-585,共6页
The estimation of lower atmospheric refractivity from radar sea clutter(RFC) is a complicated nonlinear optimization problem.This paper deals with the RFC problem in a Bayesian framework.It uses the unbiased Markov ... The estimation of lower atmospheric refractivity from radar sea clutter(RFC) is a complicated nonlinear optimization problem.This paper deals with the RFC problem in a Bayesian framework.It uses the unbiased Markov Chain Monte Carlo(MCMC) sampling technique,which can provide accurate posterior probability distributions of the estimated refractivity parameters by using an electromagnetic split-step fast Fourier transform terrain parabolic equation propagation model within a Bayesian inversion framework.In contrast to the global optimization algorithm,the Bayesian-MCMC can obtain not only the approximate solutions,but also the probability distributions of the solutions,that is,uncertainty analyses of solutions.The Bayesian-MCMC algorithm is implemented on the simulation radar sea-clutter data and the real radar seaclutter data.Reference data are assumed to be simulation data and refractivity profiles are obtained using a helicopter.The inversion algorithm is assessed(i) by comparing the estimated refractivity profiles from the assumed simulation and the helicopter sounding data;(ii) the one-dimensional(1D) and two-dimensional(2D) posterior probability distribution of solutions. 展开更多
关键词 refractivity from clutter terrain parabolic equation propagation model Bayesian-Markov chain Monte Carlo uncertainty analysis
下载PDF
Cost-Benefit Assessment of Inspection and Repair Planning for Ship Structures Considering Corrosion Model Uncertainty
9
作者 李典庆 唐文勇 张圣坤 《China Ocean Engineering》 SCIE EI 2005年第3期409-420,共12页
Owing to high costs and unnecessary inspections necessitated by the traditional inspection planning for ship structures, the risk-based inspection and repair planning should be investigated for the most cost-effective... Owing to high costs and unnecessary inspections necessitated by the traditional inspection planning for ship structures, the risk-based inspection and repair planning should be investigated for the most cost-effective inspection. This paper aims to propose a cost-benefit assessment model of risk-based inspection and repair planning for ship structures subjected to corrosion deterioration. Then, the benefit-cost ratio is taken to be an index for the selection of the optimal inspection and repair strategy. The planning problem is formulated as an optimization problem where the benefit-cost ratio for the expected lifetime is maximized with a constraint on the minimum acceptalbe reliability index. To account for the effect of corrosion model uncertainty on the cost-benefit assessment, two corrosion models, namgly, Paik' s model and Guedes Soares' model, are adopted for analysis. A numerical example is presented to illustrate the proposed method. Sensitivity studies are also providet. The results indicate that the proposed method of risk-based cost-benefit analysis can effectively integrate the economy with reliability of the inspection and repair planning. A balance can be achieved between the risk cost and total expected inspection and repair costs with the proposed method, which is very. effective in selecting the optimal inspection and repair strategy. It is pointed out that the corrosion model uncertainty and parametric uncertaintg have a significant impact on the cost-benefit assessment of inspection and repair planning. 展开更多
关键词 ship structures inspection and repair planning COST-BENEFIT model uncertainty
下载PDF
A Nonlinear Representation of Model Uncertainty in a Convective-Scale Ensemble Prediction System
10
作者 Zhizhen XU Jing CHEN +2 位作者 Mu MU Guokun DAI Yanan MA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第9期1432-1450,共19页
How to accurately address model uncertainties with consideration of the rapid nonlinear error growth characteristics in a convection-allowing system is a crucial issue for performing convection-scale ensemble forecast... How to accurately address model uncertainties with consideration of the rapid nonlinear error growth characteristics in a convection-allowing system is a crucial issue for performing convection-scale ensemble forecasts.In this study,a new nonlinear model perturbation technique for convective-scale ensemble forecasts is developed to consider a nonlinear representation of model errors in the Global and Regional Assimilation and Prediction Enhanced System(GRAPES)Convection-Allowing Ensemble Prediction System(CAEPS).The nonlinear forcing singular vector(NFSV)approach,that is,conditional nonlinear optimal perturbation-forcing(CNOP-F),is applied in this study,to construct a nonlinear model perturbation method for GRAPES-CAEPS.Three experiments are performed:One of them is the CTL experiment,without adding any model perturbation;the other two are NFSV-perturbed experiments,which are perturbed by NFSV with two different groups of constraint radii to test the sensitivity of the perturbation magnitude constraint.Verification results show that the NFSV-perturbed experiments achieve an overall improvement and produce more skillful forecasts compared to the CTL experiment,which indicates that the nonlinear NFSV-perturbed method can be used as an effective model perturbation method for convection-scale ensemble forecasts.Additionally,the NFSV-L experiment with large perturbation constraints generally performs better than the NFSV-S experiment with small perturbation constraints in the verification for upper-air and surface weather variables.But for precipitation verification,the NFSV-S experiment performs better in forecasts for light precipitation,and the NFSV-L experiment performs better in forecasts for heavier precipitation,indicating that for different precipitation events,the perturbation magnitude constraint must be carefully selected.All the findings above lay a foundation for the design of nonlinear model perturbation methods for future CAEPSs. 展开更多
关键词 Convection-Allowing Ensemble Prediction System model uncertainty nonlinear forcing singular vector
下载PDF
Uncertainty in groundwater models and how to cope with it
11
《Global Geology》 1998年第1期79-79,共1页
关键词 uncertainty in groundwater models and how to cope with it
下载PDF
Backstepping Sliding Mode Control Based on Extended State Observer for Hydraulic Servo System 被引量:1
12
作者 Zhenshuai Wan Yu Fu +1 位作者 Chong Liu Longwang Yue 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3565-3581,共17页
Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertaint... Hydraulic servo system plays an important role in industrial fields due to the advantages of high response,small size-to-power ratio and large driving force.However,inherent nonlinear behaviors and modeling uncertainties are the main obstacles for hydraulic servo system to achieve high tracking perfor-mance.To deal with these difficulties,this paper presents a backstepping sliding mode controller to improve the dynamic tracking performance and anti-interfer-ence ability.For this purpose,the nonlinear dynamic model is firstly established,where the nonlinear behaviors and modeling uncertainties are lumped as one term.Then,the extended state observer is introduced to estimate the lumped distur-bance.The system stability is proved by using the Lyapunov stability theorem.Finally,comparative simulation and experimental are conducted on a hydraulic servo system platform to verify the efficiency of the proposed control scheme. 展开更多
关键词 Hydraulic servo system nonlinear behaviors modeling uncertainties backstepping control sliding mode control extended state observer
下载PDF
贝叶斯推理和动态神经反馈促进先天性心脏病智能诊断的临床应用
13
作者 谭伟敏 曹银银 +8 位作者 马晓静 茹港徽 李吉春 张璟 高燕 杨佳伦 黄国英 颜波 李健 《Engineering》 SCIE EI CAS CSCD 2023年第4期90-102,M0005,共14页
先天性心脏病(CHD)是婴幼儿死亡主要原因。基于人工智能的先天性心脏病诊断网络(CHDNet)是一种基于超声心动图视频的二分类模型,用于判别超声心动图视频是否包含心脏缺陷。现有的CHDNet模型表现出与医学专家相当甚至更好的判别性能,但... 先天性心脏病(CHD)是婴幼儿死亡主要原因。基于人工智能的先天性心脏病诊断网络(CHDNet)是一种基于超声心动图视频的二分类模型,用于判别超声心动图视频是否包含心脏缺陷。现有的CHDNet模型表现出与医学专家相当甚至更好的判别性能,但它们在训练集之外的样本上的不可靠性已成为模型部署的关键瓶颈。而这是当前大多数基于AI诊断方法的共性问题。为了克服这一挑战,本文我们提出了两种基本机制——贝叶斯推理和动态神经反馈——分别用于衡量和提高人工智能诊断的可靠性。贝叶斯推理允许神经网络模型输出CHD判别的可靠性而不仅仅是单一的判别结果,而动态神经反馈是一个计算神经反馈单元,允许神经网络将知识从输出层反馈给浅层,使神经网络有选择地激活相关神经元。为了评估这两种机制的有效性,我们在包含三种常见CHD缺陷的4151个超声心动图视频上训练了CHDNet,并在1037个超声心动图视频的内部测试集和从其他心血管成像设备新收集的692个外部视频集上对其进行了测试。每个超声心动图视频对应于一位患者和一次就诊。我们在多种代表性神经网络架构上展示了贝叶斯推理获得的可靠性如何解释和量化神经网络内部与外部测试集之间的性能显著差异,以及尽管输入被噪声破坏或使用外部测试集时,设计的反馈单元如何帮助神经网络保持高精度和可靠性。 展开更多
关键词 Congenital heart disease Artificial intelligence Deep learning Model uncertainty
下载PDF
Introduction to the Special Issue on Advances in Neutrosophic and Plithogenic Sets for Engineering and Sciences:Theory,Models,and Applications
14
作者 S.A.Edalatpanah Florentin Smarandache 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期817-819,共3页
Recently,research on uncertainty modeling has been progressing rapidly,and many essential and breakthrough studies have already been done.There are various ways to handle these uncertainties,such as fuzzy and intuitio... Recently,research on uncertainty modeling has been progressing rapidly,and many essential and breakthrough studies have already been done.There are various ways to handle these uncertainties,such as fuzzy and intuitionistic fuzzy sets.Although these concepts can take incomplete information in various real-world issues,they cannot address all types of uncertainty,such as indeterminate and inconsistent information.The neutrosophic theory founded by Florentin Smarandache in 1998 constitutes a further generalization of fuzzy set,intuitionistic fuzzy set,picture fuzzy set,Pythagorean fuzzy set,spherical fuzzy set,etc.Since then,this logic has been applied in various science and engineering domains. 展开更多
关键词 uncertainty modeling various science engineering domains
下载PDF
A review of uncertain factors and analytic methods in long-term energy system optimization models
15
作者 Siyu Feng Hongtao Ren Wenji Zhou 《Global Energy Interconnection》 EI CSCD 2023年第4期450-466,共17页
A larger number of uncertain factors in energy systems influence their evolution.Owing to the complexity of energy system modeling,incorporating uncertainty analysis to energy system modeling is essential for future e... A larger number of uncertain factors in energy systems influence their evolution.Owing to the complexity of energy system modeling,incorporating uncertainty analysis to energy system modeling is essential for future energy system planning and resource allocation.This study focusses on long-term energy system optimization model.The important uncertain parameters in the model are analyzed and divided into policy,economic,and technical factors.This study specifically addresses the challenges related to carbon emission reduction and energy transition.It involves collecting and organizing relevant research on uncertainty analysis of long-term energy systems.Various energy system uncertainty modeling methods and their applications from the literature are summarized in this review.Finally,important uncertainty factors and uncertainty modeling methods for long-term energy system modeling are discussed,and future research directions are proposed. 展开更多
关键词 Long-term energy system optimization models Uncertain factors uncertainty modeling
下载PDF
Output Feedback Dynamic Surface Controller Design for Airbreathing Hypersonic Flight Vehicle 被引量:4
16
作者 Delong Hou Qing Wang Chaoyang Dong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第2期186-197,共12页
This paper addresses issues related to nonlinear robust output feedback controller design for a nonlinear model of airbreathing hypersonic vehicle. The control objective is to realize robust tracking of velocity and a... This paper addresses issues related to nonlinear robust output feedback controller design for a nonlinear model of airbreathing hypersonic vehicle. The control objective is to realize robust tracking of velocity and altitude in the presence of immeasurable states, uncertainties and varying flight conditions.A novel reduced order fuzzy observer is proposed to estimate the immeasurable states. Based on the information of observer and the measured states, a new robust output feedback controller combining dynamic surface theory and fuzzy logic system is proposed for airbreathing hypersonic vehicle. The closedloop system is proved to be semi-globally uniformly ultimately bounded(SUUB), and the tracking error can be made small enough by choosing proper gains of the controller, filter and observer. Simulation results from the full nonlinear vehicle model illustrate the effectiveness and good performance of the proposed control scheme. 展开更多
关键词 Hypersonic flight vehicle immeasurable states output feedback control model uncertainties fuzzy logic system dynamic surface control
下载PDF
Novel robust control framework for morphing aircraft 被引量:4
17
作者 Chunsheng Liu Shaojie Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期281-287,共7页
This paper develops a robust control methodology for a class of morphing aircraft,which is called innovative control effector(ICE) aircraft.For the ICE morphing aircraft,the distributed arrays of hundreds of shape-c... This paper develops a robust control methodology for a class of morphing aircraft,which is called innovative control effector(ICE) aircraft.For the ICE morphing aircraft,the distributed arrays of hundreds of shape-change devices are employed to stabilize and maneuver the air vehicle.Because the morphing aircraft have the inherent uncertainty and varying dynamics due to the alteration of their configuration,a desired control performance can not be satisfied with a fixed feedback controller.Therefore,a novel control framework including an adaptive flight control law and an adaptive allocation algorithm is proposed.Firstly,a state feedback adaptive control law is designed to guarantee closed-loop stability and state tracking in the presence of uncertain dynamics caused by the wing shape change due to different flight missions.In the control allocation,many distributed arrays are managed in an optimal way to improve the robustness of the system.The scheme is used to an uncertain morphing aircraft model,and the simulation results demonstrate their performance. 展开更多
关键词 morphing aircraft flight control law adaptive control allocation model uncertainty
下载PDF
A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China 被引量:5
18
作者 ZHANG Rong-Hua YU Yongqiang +13 位作者 SONG Zhenya REN Hong-Li TANG Youmin QIAO Fangli WU Tongwen GAO Chuan HU Junya TIAN Feng ZHU Yuchao CHEN Lin LIU Hailong LIN Pengfei WU Fanghua WANG Lin 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2020年第4期930-961,共32页
El Nino-Southern Oscillation(ENSO) is the strongest interannual signal that is producedby basinscale processes in the tropical Pacific,with significant effects on weather and climate worldwide.In the past,extensive an... El Nino-Southern Oscillation(ENSO) is the strongest interannual signal that is producedby basinscale processes in the tropical Pacific,with significant effects on weather and climate worldwide.In the past,extensive and intensive international efforts have been devoted to coupled model developments for ENSO studies.A hierarchy of coupled ocean-atmo sphere models has been formulated;in terms of their complexity,they can be categorized into intermediate coupled models(ICMs),hybrid coupled models(HCMs),and fully coupled general circulation models(CGCMs).ENSO modeling has made significant progress over the past decades,reaching a stage where coupled models can now be used to successfully predict ENSO events 6 months to one year in advance.Meanwhile,ENSO exhibits great diversity and complexity as observed in nature,which still cannot be adequately captured by current state-of-the-art coupled models,presenting a challenge to ENSO modeling.We primarily reviewed the long-term efforts in ENSO modeling continually and steadily made at different institutions in China;some selected representative examples are presented here to review the current status of ENSO model developments and applications,which have been actively pursued with noticeable progress being made recently.As ENSO simulations are very sensitive to model formulations and process representations etc.,dedicated efforts have been devoted to ENSO model developments and improvements.Now,different ocean-atmosphere coupled models have been available in China,which exhibit good model performances and have already had a variety of applications to climate modeling,including the Coupled Model Intercomparison Project Phase 6(CMIP6).Nevertheless,large biases and uncertainties still exist in ENSO simulations and predictions,and there are clear rooms for their improvements,which are still an active area of researches and applications.Here,model performances of ENSO simulations are assessed in terms of advantages and disadvantages with these differently formulated coupled models,pinpointing to the areas where they need to be further improved for ENSO studies.These analyses provide valuable guidance for future improvements in ENSO simulations and predictions. 展开更多
关键词 El Niño-Southern Oscillation(ENSO) coupled ocean-atmosphere models simulations and predictions model biases and uncertainties
下载PDF
Prediction of seismic collapse risk of steel moment frame mid-rise structures by meta-heuristic algorithms 被引量:2
19
作者 Fooad Karimi Ghaleh Jough Serhan Sensoy 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第4期743-757,共15页
Different performance levels may be obtained for sideway collapse evaluation of steel moment frames depending on the evaluation procedure used to handle uncertainties. In this article, the process of representing mode... Different performance levels may be obtained for sideway collapse evaluation of steel moment frames depending on the evaluation procedure used to handle uncertainties. In this article, the process of representing modelling uncertainties, record to record (RTR) variations and cognitive uncertainties for moment resisting steel frames of various heights is discussed in detail. RTR uncertainty is used by incremental dynamic analysis (IDA), modelling uncertainties are considered through backbone curves and hysteresis loops of component, and cognitive uncertainty is presented in three levels of material quality. IDA is used to evaluate RTR uncertainty based on strong ground motion records selected by the k-means algorithm, which is favoured over Monte Carlo selection due to its time saving appeal. Analytical equations of the Response Surface Method are obtained through IDA results by the Cuckoo algorithm, which predicts the mean and standard deviation of the collapse fragility curve. The Takagi-Sugeno-Kang model is used to represent material quality based on the response surface coefficients. Finally, collapse fragility curves with the various sources of uncertainties mentioned are derived through a large number of material quality values and meta variables inferred by the Takagi-Sugeno-Kang fuzzy model based on response surface method coefficients. It is concluded that a better risk management strategy in countries where material quality control is weak, is to account for cognitive uncertainties in fragility curves and the mean annual frequency. 展开更多
关键词 modelling uncertainty cognitive uncertainty TSK model Cuckoo algorithm
下载PDF
A novel adaptive finite-time controller for synchronizing chaotic gyros with nonlinear inputs 被引量:1
20
作者 Mohammad Pourmahmood Aghababa 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第9期86-91,共6页
In this paper, the problem of the finite-time synchronization of two uncertain chaotic gyros is discussed. The parameters of both the master and the slave gyros are assumed to be unknown in advance. The effects of mod... In this paper, the problem of the finite-time synchronization of two uncertain chaotic gyros is discussed. The parameters of both the master and the slave gyros are assumed to be unknown in advance. The effects of model uncertainties and input nonlinearities are also taken into account. An appropriate adaptation law is proposed to tackle the gyros' unknown parameters. Based on the adaptation law and the finite-time control technique, proper control laws are introduced to ensure that the trajectories of the slave gyro converge to the trajectories of the master gyro in a given finite time. Simulation results show the applicability and the efficiency of the proposed finite-time controller. 展开更多
关键词 chaotic gyro finite-time synchronization model uncertainty nonlinear input
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部