In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local ...In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local optimum of the standard fruit fly optimization algorithm. By using the information of the iteration number and the maximum iteration number, the proposed algorithm uses the floor function to ensure that the fruit fly swarms adopt the large step search during the olfactory search stage which improves the search speed;in the visual search stage, the small step is used to effectively avoid local optimum. Finally, using commonly used benchmark testing functions, the proposed algorithm is compared with the standard fruit fly optimization algorithm with some fixed steps. The simulation experiment results show that the proposed algorithm can quickly approach the optimal solution in the olfactory search stage and accurately search in the visual search stage, demonstrating more effective performance.展开更多
An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to...An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to determine the splitting of jobs and the sequence of the sub-lots simultaneously. Based on the encoding scheme,three kinds of neighborhoods are developed for generating new solutions. To well balance the exploitation and exploration,two main search procedures are designed within the evolutionary search framework of the iFOA,including the neighborhood-based search( smell-vision-based search) and the global cooperation-based search. Finally,numerical testing results are provided,and the comparisons demonstrate the effectiveness of the proposed iFOA for solving the LSFSP.展开更多
Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid mo...Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid model in combination of least squares support vector machine(LSSVM) model with fruit fly optimization algorithm(FOA) and the seasonal index adjustment is constructed to predict monthly electricity consumption. The monthly electricity consumption demonstrates a nonlinear characteristic and seasonal tendency. The LSSVM has a good fit for nonlinear data, so it has been widely applied to handling nonlinear time series prediction. However, there is no unified selection method for key parameters and no unified method to deal with the effect of seasonal tendency. Therefore, the FOA was hybridized with the LSSVM and the seasonal index adjustment to solve this problem. In order to evaluate the forecasting performance of hybrid model, two samples of monthly electricity consumption of China and the United States were employed, besides several different models were applied to forecast the two empirical time series. The results of the two samples all show that, for seasonal data, the adjusted model with seasonal indexes has better forecasting performance. The forecasting performance is better than the models without seasonal indexes. The fruit fly optimized LSSVM model outperforms other alternative models. In other words, the proposed hybrid model is a feasible method for the electricity consumption forecasting.展开更多
Currently,the industry is experiencing an exponential increase in dealing with binary-based combinatorial problems.In this sense,metaheuristics have been a common trend in the field in order to design approaches to so...Currently,the industry is experiencing an exponential increase in dealing with binary-based combinatorial problems.In this sense,metaheuristics have been a common trend in the field in order to design approaches to solve them successfully.Thus,a well-known strategy consists in the use of algorithms based on discrete swarms transformed to perform in binary environments.Following the No Free Lunch theorem,we are interested in testing the performance of the Fruit Fly Algorithm,this is a bio-inspired metaheuristic for deducing global optimization in continuous spaces,based on the foraging behavior of the fruit fly,which usually has much better sensory perception of smell and vision than any other species.On the other hand,the Set Coverage Problem is a well-known NP-hard problem with many practical applications,including production line balancing,utility installation,and crew scheduling in railroad and mass transit companies.In this paper,we propose different binarization methods for the Fruit Fly Algorithm,using Sshaped and V-shaped transfer functions and various discretization methods to make the algorithm work in a binary search space.We are motivated with this approach,because in this way we can deliver to future researchers interested in this area,a way to be able to work with continuous metaheuristics in binary domains.This new approach was tested on benchmark instances of the Set Coverage Problem and the computational results show that the proposed algorithm is robust enough to produce good results with low computational cost.展开更多
Since practical mathematical model for the design optimization of switched reluctance motor(SRM)is difficult to derive because of the strong nonlinearity,precise prediction of electromagnetic characteristics is of gre...Since practical mathematical model for the design optimization of switched reluctance motor(SRM)is difficult to derive because of the strong nonlinearity,precise prediction of electromagnetic characteristics is of great importance during the optimization procedure.In this paper,an improved generalized regression neural network(GRNN)optimized by fruit fly optimization algorithm(FOA)is proposed for the modeling of SRM that represent the relationship of torque ripple and efficiency with the optimization variables,stator pole arc,rotor pole arc and rotor yoke height.Finite element parametric analysis technology is used to obtain the sample data for GRNN training and verification.Comprehensive comparisons and analysis among back propagation neural network(BPNN),radial basis function neural network(RBFNN),extreme learning machine(ELM)and GRNN is made to test the effectiveness and superiority of FOA-GRNN.展开更多
As a novel population-based optimization algorithm, fruit fly optimization(FFO) algorithm is inspired by the foraging behavior of fruit flies and possesses the advantages of simple search operations and easy implement...As a novel population-based optimization algorithm, fruit fly optimization(FFO) algorithm is inspired by the foraging behavior of fruit flies and possesses the advantages of simple search operations and easy implementation. Just like most population-based evolutionary algorithms, the basic FFO also suffers from being trapped in local optima for function optimization due to premature convergence.In this paper, an improved FFO, named IPGS-FFO, is proposed in which two novel strategies are incorporated into the conventional FFO. Specifically, a smell sensitivity parameter together with an inverse power generation mechanism(IPGS) is introduced to enhance local exploitation. Moreover,a dynamic shrinking search radius strategy is incorporated so as to enhance the global exploration over search space by adaptively adjusting the searching area in the problem domain. The statistical performance of FFO, the proposed IPGS-FFO, three state-of-the-art FFO variants, and six metaheuristics are tested on twenty-six well-known unimodal and multimodal benchmark functions with dimension 30, respectively. Experimental results and comparisons show that the proposed IPGS-FFO achieves better performance than three FFO variants and competitive performance against six other meta-heuristics in terms of the solution accuracy and convergence rate.展开更多
The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimizat...The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm(FOA) is used to solve TSP, since it has the advantages of being easy to understand and having a simple implementation. However, it has problems, including a slow convergence rate for the algorithm, easily falling into the local optimum, and an insufficient optimization precision. To address TSP effectively, three improvements are proposed in this paper to improve FOA. First, the vision search process is reinforced in the foraging behavior of fruit flies to improve the convergence rate of FOA. Second, an elimination mechanism is added to FOA to increase the diversity. Third, a reverse operator and a multiplication operator are proposed. They are performed on the solution sequence in the fruit fly's smell search and vision search processes, respectively. In the experiment, 10 benchmarks selected from TSPLIB are tested. The results show that the improved FOA outperforms other alternatives in terms of the convergence rate and precision.展开更多
针对乳腺肿瘤良恶性二值分类的特点,提出了一种基于修正的果蝇优化算法和支持向量机(MFOASVM)的乳腺肿瘤识别方法.为提高SVM分类器的泛化性能,将MFOA算法引入SVM,进而优化SVM中的惩罚参数和核函数参数.为了综合评估提出算法的有效性,在...针对乳腺肿瘤良恶性二值分类的特点,提出了一种基于修正的果蝇优化算法和支持向量机(MFOASVM)的乳腺肿瘤识别方法.为提高SVM分类器的泛化性能,将MFOA算法引入SVM,进而优化SVM中的惩罚参数和核函数参数.为了综合评估提出算法的有效性,在威斯康新诊断乳腺癌(Wisconsin diagnostic breast cancer,WDBC)数据集进行了实验对比分析.实验结果表明:MFOA-SVM与BP,LVQ及PSO-SVM 3种方法相比,其分类准确性和稳定性显著提高.展开更多
Large-scale service composition has become an important research topic in Service-Oriented Computing(SOC). Quality of Service(Qo S) has been mostly applied to represent nonfunctional properties of web services and...Large-scale service composition has become an important research topic in Service-Oriented Computing(SOC). Quality of Service(Qo S) has been mostly applied to represent nonfunctional properties of web services and to differentiate those with the same functionality. Many studies for measuring service composition in terms of Qo S have been completed. Among current popular optimization methods for service composition, the exhaustion method has some disadvantages such as requiring a large number of calculations and poor scalability. Similarly,the traditional evolutionary computation method has defects such as exhibiting slow convergence speed and falling easily into the local optimum. In order to solve these problems, an improved optimization algorithm, WS FOA(Web Service composition based on Fruit Fly Optimization Algorithm) for service composition, was proposed, on the basis of the modeling of service composition and the FOA. Simulated experiments demonstrated that the algorithm is effective, feasible, stable, and possesses good global searching ability.展开更多
文摘In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local optimum of the standard fruit fly optimization algorithm. By using the information of the iteration number and the maximum iteration number, the proposed algorithm uses the floor function to ensure that the fruit fly swarms adopt the large step search during the olfactory search stage which improves the search speed;in the visual search stage, the small step is used to effectively avoid local optimum. Finally, using commonly used benchmark testing functions, the proposed algorithm is compared with the standard fruit fly optimization algorithm with some fixed steps. The simulation experiment results show that the proposed algorithm can quickly approach the optimal solution in the olfactory search stage and accurately search in the visual search stage, demonstrating more effective performance.
基金National Key Basic Research and Development Program of China(No.2013CB329503)National Natural Science Foundation of China(No.61174189)the Doctoral Program Foundation of Institutions of Higher Education of China(No.20130002110057)
文摘An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to determine the splitting of jobs and the sequence of the sub-lots simultaneously. Based on the encoding scheme,three kinds of neighborhoods are developed for generating new solutions. To well balance the exploitation and exploration,two main search procedures are designed within the evolutionary search framework of the iFOA,including the neighborhood-based search( smell-vision-based search) and the global cooperation-based search. Finally,numerical testing results are provided,and the comparisons demonstrate the effectiveness of the proposed iFOA for solving the LSFSP.
基金National Social Science Foundation of China(No.18AGL028)Social Science Foundation of the Higher Education Institutions Jiangsu Province,China(No.2018SJZDI070)Social Science Foundation of the Jiangsu Province,China(Nos.16ZZB004,17ZTB005)
文摘Electricity is the guarantee of economic development and daily life. Thus, accurate monthly electricity consumption forecasting can provide reliable guidance for power construction planning. In this paper, a hybrid model in combination of least squares support vector machine(LSSVM) model with fruit fly optimization algorithm(FOA) and the seasonal index adjustment is constructed to predict monthly electricity consumption. The monthly electricity consumption demonstrates a nonlinear characteristic and seasonal tendency. The LSSVM has a good fit for nonlinear data, so it has been widely applied to handling nonlinear time series prediction. However, there is no unified selection method for key parameters and no unified method to deal with the effect of seasonal tendency. Therefore, the FOA was hybridized with the LSSVM and the seasonal index adjustment to solve this problem. In order to evaluate the forecasting performance of hybrid model, two samples of monthly electricity consumption of China and the United States were employed, besides several different models were applied to forecast the two empirical time series. The results of the two samples all show that, for seasonal data, the adjusted model with seasonal indexes has better forecasting performance. The forecasting performance is better than the models without seasonal indexes. The fruit fly optimized LSSVM model outperforms other alternative models. In other words, the proposed hybrid model is a feasible method for the electricity consumption forecasting.
文摘Currently,the industry is experiencing an exponential increase in dealing with binary-based combinatorial problems.In this sense,metaheuristics have been a common trend in the field in order to design approaches to solve them successfully.Thus,a well-known strategy consists in the use of algorithms based on discrete swarms transformed to perform in binary environments.Following the No Free Lunch theorem,we are interested in testing the performance of the Fruit Fly Algorithm,this is a bio-inspired metaheuristic for deducing global optimization in continuous spaces,based on the foraging behavior of the fruit fly,which usually has much better sensory perception of smell and vision than any other species.On the other hand,the Set Coverage Problem is a well-known NP-hard problem with many practical applications,including production line balancing,utility installation,and crew scheduling in railroad and mass transit companies.In this paper,we propose different binarization methods for the Fruit Fly Algorithm,using Sshaped and V-shaped transfer functions and various discretization methods to make the algorithm work in a binary search space.We are motivated with this approach,because in this way we can deliver to future researchers interested in this area,a way to be able to work with continuous metaheuristics in binary domains.This new approach was tested on benchmark instances of the Set Coverage Problem and the computational results show that the proposed algorithm is robust enough to produce good results with low computational cost.
基金This work was supported in part by the National Natural Science Foundation of China under Grant61503132 and Grant51477047the Hunan Provincial Natural Science Foundation of China under Grant2015JJ5029.
文摘Since practical mathematical model for the design optimization of switched reluctance motor(SRM)is difficult to derive because of the strong nonlinearity,precise prediction of electromagnetic characteristics is of great importance during the optimization procedure.In this paper,an improved generalized regression neural network(GRNN)optimized by fruit fly optimization algorithm(FOA)is proposed for the modeling of SRM that represent the relationship of torque ripple and efficiency with the optimization variables,stator pole arc,rotor pole arc and rotor yoke height.Finite element parametric analysis technology is used to obtain the sample data for GRNN training and verification.Comprehensive comparisons and analysis among back propagation neural network(BPNN),radial basis function neural network(RBFNN),extreme learning machine(ELM)and GRNN is made to test the effectiveness and superiority of FOA-GRNN.
基金supported by the National Natural Science Foundation of China under Grant Nos.71701156,71390331 and 71690242the Natural Science Foundation of Hubei Province of China under Grant No.2017CFB427+5 种基金Key Research Program of Frontier Sciences for Chinese Academy of Sciences under Grant No.QYZDB-SSW-SYS020Humanity and Social Science Youth Foundation of Ministry of Education of China under Grant No.16YJCZH056Hubei Province Department of Education Humanities and Social Sciences Research Project under Grant No.17Q034Open Funding of Center for Service Science and Engineering,Wuhan University of Science and Technology under Grant No.CSSE2017KA01Open Funding of Intelligent Information Processing and Real-time Industrial System under Grant No.2016znss18BYoung Incubation Program of Wuhan University of Science and Technology under Grant No.2016xz017 and 2017xz031
文摘As a novel population-based optimization algorithm, fruit fly optimization(FFO) algorithm is inspired by the foraging behavior of fruit flies and possesses the advantages of simple search operations and easy implementation. Just like most population-based evolutionary algorithms, the basic FFO also suffers from being trapped in local optima for function optimization due to premature convergence.In this paper, an improved FFO, named IPGS-FFO, is proposed in which two novel strategies are incorporated into the conventional FFO. Specifically, a smell sensitivity parameter together with an inverse power generation mechanism(IPGS) is introduced to enhance local exploitation. Moreover,a dynamic shrinking search radius strategy is incorporated so as to enhance the global exploration over search space by adaptively adjusting the searching area in the problem domain. The statistical performance of FFO, the proposed IPGS-FFO, three state-of-the-art FFO variants, and six metaheuristics are tested on twenty-six well-known unimodal and multimodal benchmark functions with dimension 30, respectively. Experimental results and comparisons show that the proposed IPGS-FFO achieves better performance than three FFO variants and competitive performance against six other meta-heuristics in terms of the solution accuracy and convergence rate.
基金supported by the National Natural Science Foundation of China(Nos.61472159 and 61373051)
文摘The traveling salesman problem(TSP), a typical non-deterministic polynomial(NP) hard problem, has been used in many engineering applications. As a new swarm-intelligence optimization algorithm, the fruit fly optimization algorithm(FOA) is used to solve TSP, since it has the advantages of being easy to understand and having a simple implementation. However, it has problems, including a slow convergence rate for the algorithm, easily falling into the local optimum, and an insufficient optimization precision. To address TSP effectively, three improvements are proposed in this paper to improve FOA. First, the vision search process is reinforced in the foraging behavior of fruit flies to improve the convergence rate of FOA. Second, an elimination mechanism is added to FOA to increase the diversity. Third, a reverse operator and a multiplication operator are proposed. They are performed on the solution sequence in the fruit fly's smell search and vision search processes, respectively. In the experiment, 10 benchmarks selected from TSPLIB are tested. The results show that the improved FOA outperforms other alternatives in terms of the convergence rate and precision.
文摘针对乳腺肿瘤良恶性二值分类的特点,提出了一种基于修正的果蝇优化算法和支持向量机(MFOASVM)的乳腺肿瘤识别方法.为提高SVM分类器的泛化性能,将MFOA算法引入SVM,进而优化SVM中的惩罚参数和核函数参数.为了综合评估提出算法的有效性,在威斯康新诊断乳腺癌(Wisconsin diagnostic breast cancer,WDBC)数据集进行了实验对比分析.实验结果表明:MFOA-SVM与BP,LVQ及PSO-SVM 3种方法相比,其分类准确性和稳定性显著提高.
基金supported by the National Natural Science Foundation of China (Nos. 61402006 and 61202227)the Natural Science Foundation of Anhui Province of China (No. 1408085MF132)+2 种基金the Science and Technology Planning Project of Anhui Province of China (No. 1301032162)the College Students Scientific Research Training Program (No. KYXL2014060)the 211 Project of Anhui University (No. 02303301)
文摘Large-scale service composition has become an important research topic in Service-Oriented Computing(SOC). Quality of Service(Qo S) has been mostly applied to represent nonfunctional properties of web services and to differentiate those with the same functionality. Many studies for measuring service composition in terms of Qo S have been completed. Among current popular optimization methods for service composition, the exhaustion method has some disadvantages such as requiring a large number of calculations and poor scalability. Similarly,the traditional evolutionary computation method has defects such as exhibiting slow convergence speed and falling easily into the local optimum. In order to solve these problems, an improved optimization algorithm, WS FOA(Web Service composition based on Fruit Fly Optimization Algorithm) for service composition, was proposed, on the basis of the modeling of service composition and the FOA. Simulated experiments demonstrated that the algorithm is effective, feasible, stable, and possesses good global searching ability.