The electric inversion technique reconstructs the subsurface medium distribution from acquired data.On the basis of electric inversion,objects buried under the earth or seabed,such as pipelines and unexploded ordnance...The electric inversion technique reconstructs the subsurface medium distribution from acquired data.On the basis of electric inversion,objects buried under the earth or seabed,such as pipelines and unexploded ordnance,are detected and located in a contactless manner.However,the process of accurately reconstructing the shape of the target object is challenging because electric inversion is a nonlinear and ill-posed problem.In this work,we present an inverse multiquadric(IMQ)regularization method based on the level set function for reconstructing buried pipelines.In the case of locating underwater objects,the unknown inversion area is split into two parts,the background and the pipeline with known conductivity.The geometry of the pipeline is represented based on the level set function for achieving a noiseless inversion image.To obtain a binary image,the IMQ is used as the regularization term,which‘pushes’the level set function away from 0.We also provide an appropriate method to select the bandwidth and regularization parameters for the IMQ regularization term,resulting in reconstructed images with sharp edges.The simulation results and analysis show that the proposed method performs better than classical inversion methods.展开更多
This work explores the inverse stochastic resonance(ISR) induced by bounded noise and the multiple inverse stochastic resonance induced by time delay by constructing a modular neural network, where the modified Oja’s...This work explores the inverse stochastic resonance(ISR) induced by bounded noise and the multiple inverse stochastic resonance induced by time delay by constructing a modular neural network, where the modified Oja’s synaptic learning rule is employed to characterize synaptic plasticity in this network. Meanwhile, the effects of synaptic plasticity on the ISR dynamics are investigated. Through numerical simulations, it is found that the mean firing rate curve under the influence of bounded noise has an inverted bell-like shape, which implies the appearance of ISR. Moreover, synaptic plasticity with smaller learning rate strengthens this ISR phenomenon, while synaptic plasticity with larger learning rate weakens or even destroys it. On the other hand, the mean firing rate curve under the influence of time delay is found to exhibit a decaying oscillatory process, which represents the emergence of multiple ISR. However, the multiple ISR phenomenon gradually weakens until it disappears with increasing noise amplitude. On the same time, synaptic plasticity with smaller learning rate also weakens this multiple ISR phenomenon, while synaptic plasticity with larger learning rate strengthens it. Furthermore, we find that changes of synaptic learning rate can induce the emergence of ISR phenomenon. We hope these obtained results would provide new insights into the study of ISR in neuroscience.展开更多
To create a dynamic model of a pipeline system effectively and analyze its vibration characteristics, the mechanical characteristic parameters of the pipeline hoop, such as support stiffness and damping under dynamic ...To create a dynamic model of a pipeline system effectively and analyze its vibration characteristics, the mechanical characteristic parameters of the pipeline hoop, such as support stiffness and damping under dynamic load, must be obtained. In this study, an inverse method was developed by utilizing measured vibration data to identify the support stiffiiess and damping of a hoop. The procedure of identifying such parameters was described based on the measured natural frequencies and amplitudes of the frequency response functions (FRFs) of a pipeline system supported by two hoops. A dynamic model of the pipe-hoop system was built with the finite element method, and the formulas for solving the FRF of the pipeline system were provided. On the premise of selecting initial values reasonably, an inverse identification algorithm based on sensitivity analysis was proposed. A case study was performed, and the mechanical parameters of the hoop were identified using the proposed method. After introducing the identified values into the analysis model, the reliability of the identification results was validated by comparing the predicted and measured FRFs of the pipeline. Then, the developed method was used to identify the support stiffness and damping of the pipeline hoop under different preloads of the bolts. The influence of preload was also discussed. Results indicated that the support stiffiiess and damping of the hoop exhibited frequency-dependent characteristics. When the preloads of the bolts increased, the support stiffness increased, whereas the support damping decreased.展开更多
This paper describes an inverse Gaussian process-based model to characterize the growth of metal-loss corrosion defects on energy pipelines.The model parameters are evaluated using the Bayesian methodology by combinin...This paper describes an inverse Gaussian process-based model to characterize the growth of metal-loss corrosion defects on energy pipelines.The model parameters are evaluated using the Bayesian methodology by combining the inspection data obtained from multiple inspections with the prior distributions.The Markov Chain Monte Carlo(MCMC)simulation techniques are employed to numerically evaluate the posterior marginal distribution of each individual parameter.The measurement errors associated with the ILI tools are considered in the Bayesian inference.The application of the growth model is illustrated using an example involving real inspection data collected from an in-service pipeline in Alberta,Canada.The results indicate that the model in general can predict the growth of corrosion defects reasonably well.Parametric analyses associated with the growth model as well as reliability assessment of the pipeline based on the growth model are also included in the example.The proposed model can be used to facilitate the development and application of reliability-based pipeline corrosion management.展开更多
In certain computational systems the amount of space required to execute an algorithm is even more restrictive than the corresponding time necessary for solution of a problem. In this paper an algorithm for modular mu...In certain computational systems the amount of space required to execute an algorithm is even more restrictive than the corresponding time necessary for solution of a problem. In this paper an algorithm for modular multiplicative inverse is introduced and its computational space complexity is analyzed. A tight upper bound for bit storage required for execution of the algorithm is provided. It is demonstrated that for range of numbers used in public-key encryption systems, the size of bit storage does not exceed a 2K-bit threshold in the worst-case. This feature of the Enhanced-Euclid algorithm allows designing special-purpose hardware for its implementation as a subroutine in communication-secure wireless devices.展开更多
Numerous cryptographic algorithms (ElGamal, Rabin, RSA, NTRU etc) require multiple computations of modulo multiplicative inverses. This paper describes and validates a new algorithm, called the Enhanced Euclid Algorit...Numerous cryptographic algorithms (ElGamal, Rabin, RSA, NTRU etc) require multiple computations of modulo multiplicative inverses. This paper describes and validates a new algorithm, called the Enhanced Euclid Algorithm, for modular multiplicative inverse (MMI). Analysis of the proposed algorithm shows that it is more efficient than the Extended Euclid algorithm (XEA). In addition, if a MMI does not exist, then it is not necessary to use the Backtracking procedure in the proposed algorithm;this case requires fewer operations on every step (divisions, multiplications, additions, assignments and push operations on stack), than the XEA. Overall, XEA uses more multiplications, additions, assignments and twice as many variables than the proposed algorithm.展开更多
Modular inverse arithmetic plays an important role in elliptic curve cryptography. Based on the analysis of Montgomery modular inversion algorithm, this paper presents a new dual-field modular inversion algorithm, and...Modular inverse arithmetic plays an important role in elliptic curve cryptography. Based on the analysis of Montgomery modular inversion algorithm, this paper presents a new dual-field modular inversion algorithm, and a novel scalable and unified architecture for Montgomery inverse hardware in finite fields GF(p) and GF(2n) is proposed. Furthermore, this architecture based on the new modular inversion algorithm has been verified by modeling it in Verilog-HDL, and accomplished it under 0.18 μm CMOS technology. The result indicates that our work has better performance and flexibility than other works.展开更多
A high-performance, low cost inverse integer transform architecture for advanced video standard (AVS) video coding standard was presented. An 8 × 8 inverse integer transform is required in AVS video system whic...A high-performance, low cost inverse integer transform architecture for advanced video standard (AVS) video coding standard was presented. An 8 × 8 inverse integer transform is required in AVS video system which is compute-intensive. A hardware transform is inevitable to compute the transform for the real-time application. Compared with the 4 × 4 transform for H.264/AVC, the 8 × 8 integer transform is much more complex and the coefficient in the inverse transform matrix Ts is not inerratic as that in H.264/AVC. Dividing the Ts into matrix Ss and Rs, the proposed architecture is implemented with the adders and the specific CSA-trees instead of multipliers, which are area and time consuming. The architecture obtains the data processing rate up to 8 pixels per-cycle at a low cost of area. Synthesized to TSMC 0.18 μm COMS process, the architecture attains the operating frequency of 300 MHz at cost of 34 252 gates with a 2-stage pipeline scheme. A reusable scheme is also introduced for the area optimization, which results in the operating frequency of 143 MHz at cost of only 19 758 gates.展开更多
基金supported by the National Natural Sci-ence Foundation of China(No.52101383)the Fundamen-tal Research Funds for the Central Universities(No.3072021CF0802)+3 种基金the Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology(No.AMCIT2101-02)the Sino-Russian Cooperation Fund of Harbin Engi-neering University(No.2021HEUCRF006)the Ministry of Science and Higher Education of the Russian Federation(No.075-15-2020-934)the International Science&Technology Cooperation Program of China(No.2014DF R10240).
文摘The electric inversion technique reconstructs the subsurface medium distribution from acquired data.On the basis of electric inversion,objects buried under the earth or seabed,such as pipelines and unexploded ordnance,are detected and located in a contactless manner.However,the process of accurately reconstructing the shape of the target object is challenging because electric inversion is a nonlinear and ill-posed problem.In this work,we present an inverse multiquadric(IMQ)regularization method based on the level set function for reconstructing buried pipelines.In the case of locating underwater objects,the unknown inversion area is split into two parts,the background and the pipeline with known conductivity.The geometry of the pipeline is represented based on the level set function for achieving a noiseless inversion image.To obtain a binary image,the IMQ is used as the regularization term,which‘pushes’the level set function away from 0.We also provide an appropriate method to select the bandwidth and regularization parameters for the IMQ regularization term,resulting in reconstructed images with sharp edges.The simulation results and analysis show that the proposed method performs better than classical inversion methods.
基金the National Natural Science Foundation of China(Grant No.11972217).
文摘This work explores the inverse stochastic resonance(ISR) induced by bounded noise and the multiple inverse stochastic resonance induced by time delay by constructing a modular neural network, where the modified Oja’s synaptic learning rule is employed to characterize synaptic plasticity in this network. Meanwhile, the effects of synaptic plasticity on the ISR dynamics are investigated. Through numerical simulations, it is found that the mean firing rate curve under the influence of bounded noise has an inverted bell-like shape, which implies the appearance of ISR. Moreover, synaptic plasticity with smaller learning rate strengthens this ISR phenomenon, while synaptic plasticity with larger learning rate weakens or even destroys it. On the other hand, the mean firing rate curve under the influence of time delay is found to exhibit a decaying oscillatory process, which represents the emergence of multiple ISR. However, the multiple ISR phenomenon gradually weakens until it disappears with increasing noise amplitude. On the same time, synaptic plasticity with smaller learning rate also weakens this multiple ISR phenomenon, while synaptic plasticity with larger learning rate strengthens it. Furthermore, we find that changes of synaptic learning rate can induce the emergence of ISR phenomenon. We hope these obtained results would provide new insights into the study of ISR in neuroscience.
文摘To create a dynamic model of a pipeline system effectively and analyze its vibration characteristics, the mechanical characteristic parameters of the pipeline hoop, such as support stiffness and damping under dynamic load, must be obtained. In this study, an inverse method was developed by utilizing measured vibration data to identify the support stiffiiess and damping of a hoop. The procedure of identifying such parameters was described based on the measured natural frequencies and amplitudes of the frequency response functions (FRFs) of a pipeline system supported by two hoops. A dynamic model of the pipe-hoop system was built with the finite element method, and the formulas for solving the FRF of the pipeline system were provided. On the premise of selecting initial values reasonably, an inverse identification algorithm based on sensitivity analysis was proposed. A case study was performed, and the mechanical parameters of the hoop were identified using the proposed method. After introducing the identified values into the analysis model, the reliability of the identification results was validated by comparing the predicted and measured FRFs of the pipeline. Then, the developed method was used to identify the support stiffness and damping of the pipeline hoop under different preloads of the bolts. The influence of preload was also discussed. Results indicated that the support stiffiiess and damping of the hoop exhibited frequency-dependent characteristics. When the preloads of the bolts increased, the support stiffness increased, whereas the support damping decreased.
基金financial support provided by the Natural Sciences and Engineering Research Council(NSERC)of Canada and TransCanada Corporation through the Collaborative Research and Development(CRD)program.
文摘This paper describes an inverse Gaussian process-based model to characterize the growth of metal-loss corrosion defects on energy pipelines.The model parameters are evaluated using the Bayesian methodology by combining the inspection data obtained from multiple inspections with the prior distributions.The Markov Chain Monte Carlo(MCMC)simulation techniques are employed to numerically evaluate the posterior marginal distribution of each individual parameter.The measurement errors associated with the ILI tools are considered in the Bayesian inference.The application of the growth model is illustrated using an example involving real inspection data collected from an in-service pipeline in Alberta,Canada.The results indicate that the model in general can predict the growth of corrosion defects reasonably well.Parametric analyses associated with the growth model as well as reliability assessment of the pipeline based on the growth model are also included in the example.The proposed model can be used to facilitate the development and application of reliability-based pipeline corrosion management.
文摘In certain computational systems the amount of space required to execute an algorithm is even more restrictive than the corresponding time necessary for solution of a problem. In this paper an algorithm for modular multiplicative inverse is introduced and its computational space complexity is analyzed. A tight upper bound for bit storage required for execution of the algorithm is provided. It is demonstrated that for range of numbers used in public-key encryption systems, the size of bit storage does not exceed a 2K-bit threshold in the worst-case. This feature of the Enhanced-Euclid algorithm allows designing special-purpose hardware for its implementation as a subroutine in communication-secure wireless devices.
文摘Numerous cryptographic algorithms (ElGamal, Rabin, RSA, NTRU etc) require multiple computations of modulo multiplicative inverses. This paper describes and validates a new algorithm, called the Enhanced Euclid Algorithm, for modular multiplicative inverse (MMI). Analysis of the proposed algorithm shows that it is more efficient than the Extended Euclid algorithm (XEA). In addition, if a MMI does not exist, then it is not necessary to use the Backtracking procedure in the proposed algorithm;this case requires fewer operations on every step (divisions, multiplications, additions, assignments and push operations on stack), than the XEA. Overall, XEA uses more multiplications, additions, assignments and twice as many variables than the proposed algorithm.
基金Supported by the National High Technology Research and Development Program of China (863 Program) (No. 2008AA01Z103)
文摘Modular inverse arithmetic plays an important role in elliptic curve cryptography. Based on the analysis of Montgomery modular inversion algorithm, this paper presents a new dual-field modular inversion algorithm, and a novel scalable and unified architecture for Montgomery inverse hardware in finite fields GF(p) and GF(2n) is proposed. Furthermore, this architecture based on the new modular inversion algorithm has been verified by modeling it in Verilog-HDL, and accomplished it under 0.18 μm CMOS technology. The result indicates that our work has better performance and flexibility than other works.
文摘A high-performance, low cost inverse integer transform architecture for advanced video standard (AVS) video coding standard was presented. An 8 × 8 inverse integer transform is required in AVS video system which is compute-intensive. A hardware transform is inevitable to compute the transform for the real-time application. Compared with the 4 × 4 transform for H.264/AVC, the 8 × 8 integer transform is much more complex and the coefficient in the inverse transform matrix Ts is not inerratic as that in H.264/AVC. Dividing the Ts into matrix Ss and Rs, the proposed architecture is implemented with the adders and the specific CSA-trees instead of multipliers, which are area and time consuming. The architecture obtains the data processing rate up to 8 pixels per-cycle at a low cost of area. Synthesized to TSMC 0.18 μm COMS process, the architecture attains the operating frequency of 300 MHz at cost of 34 252 gates with a 2-stage pipeline scheme. A reusable scheme is also introduced for the area optimization, which results in the operating frequency of 143 MHz at cost of only 19 758 gates.