In this letter, the problem of blind source separation of Multiple-Phase-Shift-Keying (MPSK) digital signal is considered. The geometry of received MPSK signals constellation is exploited. The column vectors of receiv...In this letter, the problem of blind source separation of Multiple-Phase-Shift-Keying (MPSK) digital signal is considered. The geometry of received MPSK signals constellation is exploited. The column vectors of received signals can be regarded as the points of hyper-cube. All the possible distinct vectors of received signals are found by clustering, and mixing matrix and sources are estimated by searching out the pairing vectors and eliminating redundant information in all possible distinct vectors. Simulation results give the polar diagram of estimated original signals. They show that the proposed algorithm is effective when the original signals is Quadrature-Phase-Shift-Keying (QPSK) or 8-Phase-Shift-Keying (8PSK).展开更多
To increase the spectral efficiency of the underwater acoustic(UWA)communication system,the high order quadrature amplitude modulations(QAM)are deployed.Recently,the prob-abilistic constellation shaping(PCS)has been a...To increase the spectral efficiency of the underwater acoustic(UWA)communication system,the high order quadrature amplitude modulations(QAM)are deployed.Recently,the prob-abilistic constellation shaping(PCS)has been a novel technology to improve the spectral efficiency.The PCS with high-order QAM is introduced into the UWA communication system.A turbo equal-ization scheme with PCS was proposed to cancel the severe inter-symbol interference(ISI).The non-zero a priori information is available for the equalizer and decoder before turbo iteration.A pri-ori hard decision approach is proposed to improve the detection performance and the equalizer con-vergence speed.At the initial turbo iteration,the relation between the a priori information and the probability of the amplitude of 16QAM symbols in one dimension is given.The simulation results verified the efficiency of the proposed method,and compared to the uniform distribution(UD),the PCS-16QAM had a significant improvement of the bit error rate(BER)performance with PCS-ad-aptive turbo equalization(PCS-ATEQ).The UWA communication experiments further verified the performance superiority of the proposed method.展开更多
基金Supported by the National Natural Science Foundation of China (No. 60872114, 60972056, 61132004)Shanghai Leading Academic Discipline Project and STCSM (S30108 and 08DZ2231100)
文摘In this letter, the problem of blind source separation of Multiple-Phase-Shift-Keying (MPSK) digital signal is considered. The geometry of received MPSK signals constellation is exploited. The column vectors of received signals can be regarded as the points of hyper-cube. All the possible distinct vectors of received signals are found by clustering, and mixing matrix and sources are estimated by searching out the pairing vectors and eliminating redundant information in all possible distinct vectors. Simulation results give the polar diagram of estimated original signals. They show that the proposed algorithm is effective when the original signals is Quadrature-Phase-Shift-Keying (QPSK) or 8-Phase-Shift-Keying (8PSK).
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA22030101)the National Natural Science Foundation of China(No.61971472)the Institute of Acoustics,Chinese Academy of Sciences Free Exploration Project(No.ZYTS202003).
文摘To increase the spectral efficiency of the underwater acoustic(UWA)communication system,the high order quadrature amplitude modulations(QAM)are deployed.Recently,the prob-abilistic constellation shaping(PCS)has been a novel technology to improve the spectral efficiency.The PCS with high-order QAM is introduced into the UWA communication system.A turbo equal-ization scheme with PCS was proposed to cancel the severe inter-symbol interference(ISI).The non-zero a priori information is available for the equalizer and decoder before turbo iteration.A pri-ori hard decision approach is proposed to improve the detection performance and the equalizer con-vergence speed.At the initial turbo iteration,the relation between the a priori information and the probability of the amplitude of 16QAM symbols in one dimension is given.The simulation results verified the efficiency of the proposed method,and compared to the uniform distribution(UD),the PCS-16QAM had a significant improvement of the bit error rate(BER)performance with PCS-ad-aptive turbo equalization(PCS-ATEQ).The UWA communication experiments further verified the performance superiority of the proposed method.