The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-n...The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.展开更多
Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the ...Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.展开更多
Modulation recognition becomes unreliable at low signal-to-noise ratio(SNR)over fading channel.A novel method is proposed to recognize the digital modulated signals with frequency and phase offsets over multi-path fad...Modulation recognition becomes unreliable at low signal-to-noise ratio(SNR)over fading channel.A novel method is proposed to recognize the digital modulated signals with frequency and phase offsets over multi-path fading channels in this paper.This method can overcome the effects of phase offset,Gaussian noise and multi-path fading.To achieve this,firstly,the characteristic parameters search is constructed based on the cyclostationarity of received signals,to overcome the phase offset,Gaussian white noise,and influence caused by multi-path fading.Then,the carrier frequency of the received signal is estimated,and the maximum characteristic parameter is searched around the integer multiple carriers and their vicinities.Finally,the modulation types of the received signal with frequency and phase offsets are classified using decision thresholds.Simulation results demonstrate that the performance of the proposed method is better than the traditional methods when SNR is over 5dB,and that the proposed method is robust to frequency and phase offsets over multipath channels.展开更多
In recent years,the need for a fast,efficient and a reliable wireless network has increased dramatically.Numerous 5G networks have already been tested while a few are in the early stages of deployment.In noncooperativ...In recent years,the need for a fast,efficient and a reliable wireless network has increased dramatically.Numerous 5G networks have already been tested while a few are in the early stages of deployment.In noncooperative communication scenarios,the recognition of digital signal modulations assists people in identifying the communication targets and ensures an effective management over them.The recent advancements in both Machine Learning(ML)and Deep Learning(DL)models demand the development of effective modulation recognition models with self-learning capability.In this background,the current research article designs aDeep Learning enabled Intelligent Modulation Recognition of Communication Signal(DLIMR-CS)technique for next-generation networks.The aim of the proposed DLIMR-CS technique is to classify different kinds of digitally-modulated signals.In addition,the fractal feature extraction process is appliedwith the help of the Sevcik Fractal Dimension(SFD)approach.Then,the extracted features are fed into the Deep Variational Autoencoder(DVAE)model for the classification of the modulated signals.In order to improve the classification performance of the DVAE model,the Tunicate Swarm Algorithm(TSA)is used to finetune the hyperparameters involved in DVAE model.A wide range of simulations was conducted to establish the enhanced performance of the proposed DLIMR-CS model.The experimental outcomes confirmed the superior recognition rate of the DLIMR-CS model over recent state-of-the-art methods under different evaluation parameters.展开更多
A novel modulation recognition algorithm is proposed by introducing a Chen-Harker-Kanzow-Smale (CHKS) smooth function into the C-support vector machine deformation algorithm. A set of seven characteristic parameters i...A novel modulation recognition algorithm is proposed by introducing a Chen-Harker-Kanzow-Smale (CHKS) smooth function into the C-support vector machine deformation algorithm. A set of seven characteristic parameters is selected from a range of parameters of communication signals including instantaneous amplitude, phase, and frequency. And the Newton-Armijo algorithm is utilized to train the proposed algorithm, namely, smooth CHKS smooth support vector machine (SCHKS-SSVM). Compared with the existing algorithms, the proposed algorithm not only solves the non-differentiable problem of the second order objective function, but also reduces the recognition error. It significantly improves the training speed and also saves a large amount of storage space through large-scale sorting problems. The simulation results show that the recognition rate of the algorithm can batch training. Therefore, the proposed algorithm is suitable for solving the problem of high dimension and its recognition can exceed 95% when the signal-to-noise ratio is no less than 10 dB.展开更多
To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is ...To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is extracted by using a clustering algorithm, the neural network is trained by using the algorithm of variable gradient correction (Polak-Ribiere) so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram. Simulation results show that the recognition rate based on this algorithm is enhanced over 30% compared with the methods that adopt clustering algorithm or neural network based on the back propagation algorithm alone under the low SNR. The recognition rate can reach 90% when the SNR is 4 dB, and the method is easy to be achieved so that it has a broad application prospect in the modulating recognition.展开更多
A hybrid carrier(HC) scheme based on weighted-type fractional Fourier transform(WFRFT) has been proposed recently.While most of the works focus on HC scheme's inherent characteristics, little attention is paid to...A hybrid carrier(HC) scheme based on weighted-type fractional Fourier transform(WFRFT) has been proposed recently.While most of the works focus on HC scheme's inherent characteristics, little attention is paid to the WFRFT modulation recognition.In this paper, a new theory is provided to recognize the WFRFT modulation based on higher order cumulants(HOC). First, it is deduced that the optimal WFRFT received order can be obtained through the minimization of 4 th-order cumulants, C_(42). Then, a combinatorial searching algorithm is designed to minimize C_(42).Finally, simulation results show that the designed scheme has a high recognition rate and the combinatorial searching algorithm is effective and reliable.展开更多
This paper presents a joint high order statistics (HOS) and signal-to-noise ratio (SNR) algorithm for the recognition of multiple-input multiple-output (MIMO) radar signal without a priori knowledge of the signa...This paper presents a joint high order statistics (HOS) and signal-to-noise ratio (SNR) algorithm for the recognition of multiple-input multiple-output (MIMO) radar signal without a priori knowledge of the signal parameters. This method is capable of recognizing the MIMO radar signal as well as discriminating it from single-carrier signal adopted by conventional radar. Meanwhile, the sub-carrier number of the none-coding MIMO radar signal is estimated. Extensive simulations are carried out in different operating conditions. Simulation results prove the feasibility and indicate that the recognition probability could reach over 90% when the value of SNR is above 0 dB.展开更多
A neural network integrated classifier(NNIC) designed with a new modulation recognition algorithm based on the decision-making tree is proposed in this paper.Firstly,instantaneous parameters are extracted in the time ...A neural network integrated classifier(NNIC) designed with a new modulation recognition algorithm based on the decision-making tree is proposed in this paper.Firstly,instantaneous parameters are extracted in the time domain by the coordinated rotation digital computer(CORDIC) algorithm based on the extended convergence domain and feature parameters of frequency spectrum and power spectrum are extracted by the time-frequency analysis method.All pattern identification parameters are calculated under the I/Q orthogonal two-channel structure,and constructed into the feature vector set.Next,the classifier is designed according to the modulation pattern and recognition performance of the feature parameter set,the optimum threshold is selected for each feature parameter based on the decision-making mechanism in a single classifier,multi-source information fusion and modulation recognition are realized based on feature parameter judge process in the NNIC.Simulation results show NNIC is competent for all modulation recognitions,8 kinds of digital modulated signals are effectively identified,which shows the recognition rate and anti-interference capability at low SNR are improved greatly,the overall recognition rate can reach 100%when SNR is12dB.展开更多
Based on a comparative analysis of the Long Short-Term Memory(LSTM)and Gated Recurrent Unit(GRU)networks,we optimize the structure of the GRU network and propose a new modulation recognition method based on feature ex...Based on a comparative analysis of the Long Short-Term Memory(LSTM)and Gated Recurrent Unit(GRU)networks,we optimize the structure of the GRU network and propose a new modulation recognition method based on feature extraction and a deep learning algorithm.High-order cumulant,Signal-to-Noise Ratio(SNR),instantaneous feature,and the cyclic spectrum of signals are extracted firstly,and then input into the Convolutional Neural Network(CNN)and the parallel network of GRU for recognition.Eight modulation modes of communication signals are recognized automatically.Simulation results show that the proposed method can achieve high recognition rate at low SNR.展开更多
A new digital modulation recognition algorithm based on the instantaneous information is proposed to improve the recognition success rate in the low signal noise ratio (SNR). First denoising of the instantaneous inf...A new digital modulation recognition algorithm based on the instantaneous information is proposed to improve the recognition success rate in the low signal noise ratio (SNR). First denoising of the instantaneous information is optimized by wavelet filter, which can improve the recognition ability at low SNR. Besides the existing 3 key feature parameters, 3 new key feature parameters are proposed to be used as the decision criteria for identifying different types of digital modulation, which simplifies the recognition process and improves the recognition ability at low SNR. The simulations demonstrate that all modulation types of interest have been classified with success rate of no lower than 99 % when SNR is 10dB. Even if the SNR is lower than 5 dB, the success rate is over 95.4% for most of the modulation types.展开更多
Software defined radio(SDR)is a wireless communication technology that uses modern software to control the traditional“pure hardware circuit”.It can provide an effective and secure solution to the problem of buildin...Software defined radio(SDR)is a wireless communication technology that uses modern software to control the traditional“pure hardware circuit”.It can provide an effective and secure solution to the problem of building multi-mode,multi-frequency and multifunction wireless communication equipment.Although the concept and application of SDR have been studied a lot,there is little discussion about the operating efficiency of the established system.For the purpose of shortening the delay of mapping and reducing the high computing load in the cloud,a radio monitoring system based on edge computing is developed to achieve the flexible,extensible and real-time monitoring of high-performance SDR applications.To promote the edge intelligence of deep learning(DL)service deployment through edge computing(EC),we developed an edge intelligence algorithm of convolutional neural network(CNN)based on attention mechanism to carry out modulation recognition(MR)of the edge signal and make MR closer to the antenna terminal.Through the experiment of the system and the edge algorithm,this thesis verifies the effectiveness of the developed multifunction radio signal monitoring system.展开更多
This paper mainly studies the data characteristics of high order cumulants using digitally modulated signals, and constructs the identification feature parameters that can distinguish the signal modulation type by the...This paper mainly studies the data characteristics of high order cumulants using digitally modulated signals, and constructs the identification feature parameters that can distinguish the signal modulation type by the high-order cumulants data of the digital modulation signal. Set the identification signal modulation type determination threshold based on the value of the identification feature parameter. The identification feature parameter value of the signal modulation type is compared with the set determination threshold, to realize the recognition of digital modulation signal. This identification method is implemented based on MATLAB design, with a 2ASK (2-ary Amplitude Shift Keying) signal, 4ASK (4-ary Amplitude Shift Keying) signal, 2PSK (2-ary Phase Shift Keying) signal, 4PSK (4-ary Phase Shift Keying) signal, 2FSK (2-ary Frequency Shift Keying) signal, 4FSK (4-ary Frequency Shift Keying) signal. The second, fourth and sixth order cumulants of the six signals were analyzed. Calculate the selected identification feature parameter value and the determination threshold to identify the six signals. The six signals have made MATLAB identification simulation. Simulation results show that this method is feasible and has high recognition rate. Simulation results verify that such recognition methods maintain a high recognition rate under conditions with low signal-to-noise ratio. This identification method can be extended to more MASK (M-ary Amplitude Shift Keying), MPSK (M-ary Phase Shift Keying), MFSK (M-ary Frequency Shift Keying), MQAM (M-ary Quadrature Amplitude Modulation) signal identification.展开更多
A novel approach (HGO-EAC) for hybrid genetic op-timization (GO) with elite ant colony (EAC) is proposed for the automatic modulation recognition of communication signals,through which we improve the basic ant c...A novel approach (HGO-EAC) for hybrid genetic op-timization (GO) with elite ant colony (EAC) is proposed for the automatic modulation recognition of communication signals,through which we improve the basic ant colony algorithms by referencing elite strategy and present a new fusion strategy for genetic optimization and elite ant colony. This approach is used to train the neural networks as the classifier for modulation. Simula-tion results indicate good performance on an additive white Gaus-sian noise (AWGN) channel,with recognition rate reaching to 70% especially for CW even at signal-to-noise ratios as low as 5 dB. This approach can achieve a high recognition rate for the typical modulations such as CW,4ASK,4FSK,BPSK,and QAM16. Test result shows that it has better performance than BP algorithm and basic ant colony algorithms by achieving faster training and stronger robustness.展开更多
In this article, a new effective method of cooperative modulation recognition (CMR) is proposed to recognize different modulation types of primary user for cognitive radio receivers. In the cognitive radio (CR) sy...In this article, a new effective method of cooperative modulation recognition (CMR) is proposed to recognize different modulation types of primary user for cognitive radio receivers. In the cognitive radio (CR) system, two CR users respectively send their feature parameters to the cooperative recognition center, which is composed of back propagation neural network (BPNN). With two users' cooperation and the application of an error back propagation learning algorithm with momentum, the center improves the performance of modulation recognition, especially when one of the CR users' signal-to-noise ratio (SNR) is low. To measure the performance of the proposed method, simulations are carried out to classify different types of modulated signals corrupted by additive white Gaussian noise (AWGN). The simulation results show that this cooperation algorithm has a better recognition performance than those without cooperation.展开更多
To classify the frequency modulation signal, this paper employs a parameter invariant filter, which can transfer the frequency modulated information to variety of its envelope, and then extracts the histogram feature ...To classify the frequency modulation signal, this paper employs a parameter invariant filter, which can transfer the frequency modulated information to variety of its envelope, and then extracts the histogram feature to classify the modulation type. This method can efficiently classify the type of a signal such as frequency modulation (FM), binary frequency shift keyiing (BFSK), quadrature frequency shift keying (QFSK), 8-ary frequency shift keying (8FSK), etc. It can easily be realized and is especially suitable to applications in software radio.展开更多
It is particular important to identify the pattern of communication signal quickly and accurately at the airport terminal area with the increasing number of radio equipments.A signal modulation pattern recognition met...It is particular important to identify the pattern of communication signal quickly and accurately at the airport terminal area with the increasing number of radio equipments.A signal modulation pattern recognition method based on compressive sensing and improved residual network is proposed in this work.Firstly,the compressive sensing method is introduced in the signal preprocessing process to discard the redundant components for sampled signals.And the compressed measurement signals are taken as the input of the network.Furthermore,based on a scaled exponential linear units activation function,the residual unit and the residual network are constructed in this work to solve the problem of long training time and indistinguishable sample similar characteristics.Finally,the global residual is introduced into the training network to guarantee the convergence of the network.Simulation results show that the proposed method has higher recognition efficiency and accuracy compared with the state-of-the-art deep learning methods.展开更多
In order to identify the multi-carrier orthogonal frequency division multiplexing(OFDM) and the single-carrier signal in the non-Gaussian noise environment, different features of the two signals are analyzed in terms ...In order to identify the multi-carrier orthogonal frequency division multiplexing(OFDM) and the single-carrier signal in the non-Gaussian noise environment, different features of the two signals are analyzed in terms of five parameters: generalized normalized fourth-order cumulant, the maximum value of the instantaneous amplitude power spectral density, absolute standard deviation of instantaneous phase on the section with weak signals, and position and numbers of the generalized cyclic spectrum's peak. The recognition method of the multi-carrier OFDM and single-carrier signal is proposed in the environment with alpha-stable distribution noise. Simulation results show that the recognition rate of the multi-carrier OFDM can reach 100% when the mixed signal to noise ratio(MSNR) is greater than-5 dB and the recognition rate can reach 90% for the single-carrier when the MSNR is greater than 2 dB.展开更多
This paper presents work on modulated signal recognition using an artificial neural network (ANN) developed using the Python programme language. The study is basically on the analysis of analog modulated signals. Fo...This paper presents work on modulated signal recognition using an artificial neural network (ANN) developed using the Python programme language. The study is basically on the analysis of analog modulated signals. Four of the best-known analog modulation types are considered namely: amplitude modulation (AM), double sideband (DSB) modulation, single sideband (SSB) modulation and frequency modulation (FM). Computer simulations of the four modulated signals are carried out using MATLAB. MATLAB code is used in simulating the analog signals as well as the power spectral density of each of the analog modulated signals. In achieving an accurate classification of each of the modulated signals, extensive simulations are performed for the training of the artificial neural network. The results of the study show accurate and correct performance of the developed automatic modulation recognition with average success rate above 99.5%.展开更多
The relationship between Haar wavelet decomposition coefficients and modulated signal parame-ters is discussed. A new modulation classification method is presented. The new method uses the amplitude, frequency and pha...The relationship between Haar wavelet decomposition coefficients and modulated signal parame-ters is discussed. A new modulation classification method is presented. The new method uses the amplitude, frequency and phase information derived from Haar wavelet decomposition as feature vectors to distinguish the modulation types of M-ary Frequency-Shift Keying (MFSK), M-ary Phase-Shift Keying (MPSK) and Quadrature Amplitude Modulation (QAM) modulation types. A parallel combined classifier is designed based on these feature vectors. The overall successful recognition rate of 92.4% can be achieved even at a low Sig-nal-to-Noise Ratio (SNR) of 5dB.展开更多
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation 2022M720419 to provide fund for conducting experiments。
文摘The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation under Grant No.2022M720419。
文摘Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.
基金supported by the National Natural Science Foundation of China under Grant 62071364 and 62231027in part by the Key Research and Development Program of Shaanxi under Grant 2023-YBGY-249+1 种基金in part by the Key Research and Development Program of Guangxi under Grant 2022AB46002in part by the Fundamental Research Funds for the Central Universities under Grant KYFZ23001.
文摘Modulation recognition becomes unreliable at low signal-to-noise ratio(SNR)over fading channel.A novel method is proposed to recognize the digital modulated signals with frequency and phase offsets over multi-path fading channels in this paper.This method can overcome the effects of phase offset,Gaussian noise and multi-path fading.To achieve this,firstly,the characteristic parameters search is constructed based on the cyclostationarity of received signals,to overcome the phase offset,Gaussian white noise,and influence caused by multi-path fading.Then,the carrier frequency of the received signal is estimated,and the maximum characteristic parameter is searched around the integer multiple carriers and their vicinities.Finally,the modulation types of the received signal with frequency and phase offsets are classified using decision thresholds.Simulation results demonstrate that the performance of the proposed method is better than the traditional methods when SNR is over 5dB,and that the proposed method is robust to frequency and phase offsets over multipath channels.
文摘In recent years,the need for a fast,efficient and a reliable wireless network has increased dramatically.Numerous 5G networks have already been tested while a few are in the early stages of deployment.In noncooperative communication scenarios,the recognition of digital signal modulations assists people in identifying the communication targets and ensures an effective management over them.The recent advancements in both Machine Learning(ML)and Deep Learning(DL)models demand the development of effective modulation recognition models with self-learning capability.In this background,the current research article designs aDeep Learning enabled Intelligent Modulation Recognition of Communication Signal(DLIMR-CS)technique for next-generation networks.The aim of the proposed DLIMR-CS technique is to classify different kinds of digitally-modulated signals.In addition,the fractal feature extraction process is appliedwith the help of the Sevcik Fractal Dimension(SFD)approach.Then,the extracted features are fed into the Deep Variational Autoencoder(DVAE)model for the classification of the modulated signals.In order to improve the classification performance of the DVAE model,the Tunicate Swarm Algorithm(TSA)is used to finetune the hyperparameters involved in DVAE model.A wide range of simulations was conducted to establish the enhanced performance of the proposed DLIMR-CS model.The experimental outcomes confirmed the superior recognition rate of the DLIMR-CS model over recent state-of-the-art methods under different evaluation parameters.
基金supported by the National Natural Science Foundation of China(61401196)the Jiangsu Provincial Natural Science Foundation of China(BK20140954)+1 种基金the Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory(KX152600015/ITD-U15006)the Beijing Shengfeifan Electronic System Technology Development Co.,Ltd(KY10800150036)
文摘A novel modulation recognition algorithm is proposed by introducing a Chen-Harker-Kanzow-Smale (CHKS) smooth function into the C-support vector machine deformation algorithm. A set of seven characteristic parameters is selected from a range of parameters of communication signals including instantaneous amplitude, phase, and frequency. And the Newton-Armijo algorithm is utilized to train the proposed algorithm, namely, smooth CHKS smooth support vector machine (SCHKS-SSVM). Compared with the existing algorithms, the proposed algorithm not only solves the non-differentiable problem of the second order objective function, but also reduces the recognition error. It significantly improves the training speed and also saves a large amount of storage space through large-scale sorting problems. The simulation results show that the recognition rate of the algorithm can batch training. Therefore, the proposed algorithm is suitable for solving the problem of high dimension and its recognition can exceed 95% when the signal-to-noise ratio is no less than 10 dB.
基金supported by the National Natural Science Foundation of China(6107207061301179)the National Science and Technology Major Project(2010ZX03006-002-04)
文摘To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is extracted by using a clustering algorithm, the neural network is trained by using the algorithm of variable gradient correction (Polak-Ribiere) so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram. Simulation results show that the recognition rate based on this algorithm is enhanced over 30% compared with the methods that adopt clustering algorithm or neural network based on the back propagation algorithm alone under the low SNR. The recognition rate can reach 90% when the SNR is 4 dB, and the method is easy to be achieved so that it has a broad application prospect in the modulating recognition.
基金supported by the National Natural Science Foundation of China(6127125061571460)
文摘A hybrid carrier(HC) scheme based on weighted-type fractional Fourier transform(WFRFT) has been proposed recently.While most of the works focus on HC scheme's inherent characteristics, little attention is paid to the WFRFT modulation recognition.In this paper, a new theory is provided to recognize the WFRFT modulation based on higher order cumulants(HOC). First, it is deduced that the optimal WFRFT received order can be obtained through the minimization of 4 th-order cumulants, C_(42). Then, a combinatorial searching algorithm is designed to minimize C_(42).Finally, simulation results show that the designed scheme has a high recognition rate and the combinatorial searching algorithm is effective and reliable.
基金supported by the Foundation of Chinese People’s Liberation Army General Equipment Department(41101020303)
文摘This paper presents a joint high order statistics (HOS) and signal-to-noise ratio (SNR) algorithm for the recognition of multiple-input multiple-output (MIMO) radar signal without a priori knowledge of the signal parameters. This method is capable of recognizing the MIMO radar signal as well as discriminating it from single-carrier signal adopted by conventional radar. Meanwhile, the sub-carrier number of the none-coding MIMO radar signal is estimated. Extensive simulations are carried out in different operating conditions. Simulation results prove the feasibility and indicate that the recognition probability could reach over 90% when the value of SNR is above 0 dB.
基金Supported by the National Natural Science Foundation of China(No.61001049)Key Laboratory of Computer Architecture Opening Topic Fund Subsidization(CARCH201103)Beijing Natural Science Foundation(No.Z2002012201101)
文摘A neural network integrated classifier(NNIC) designed with a new modulation recognition algorithm based on the decision-making tree is proposed in this paper.Firstly,instantaneous parameters are extracted in the time domain by the coordinated rotation digital computer(CORDIC) algorithm based on the extended convergence domain and feature parameters of frequency spectrum and power spectrum are extracted by the time-frequency analysis method.All pattern identification parameters are calculated under the I/Q orthogonal two-channel structure,and constructed into the feature vector set.Next,the classifier is designed according to the modulation pattern and recognition performance of the feature parameter set,the optimum threshold is selected for each feature parameter based on the decision-making mechanism in a single classifier,multi-source information fusion and modulation recognition are realized based on feature parameter judge process in the NNIC.Simulation results show NNIC is competent for all modulation recognitions,8 kinds of digital modulated signals are effectively identified,which shows the recognition rate and anti-interference capability at low SNR are improved greatly,the overall recognition rate can reach 100%when SNR is12dB.
基金partially supported by Major Scientific and Technological Achievements Transformation Project of Heilongjiang Province in 2019(No.CG20A007)。
文摘Based on a comparative analysis of the Long Short-Term Memory(LSTM)and Gated Recurrent Unit(GRU)networks,we optimize the structure of the GRU network and propose a new modulation recognition method based on feature extraction and a deep learning algorithm.High-order cumulant,Signal-to-Noise Ratio(SNR),instantaneous feature,and the cyclic spectrum of signals are extracted firstly,and then input into the Convolutional Neural Network(CNN)and the parallel network of GRU for recognition.Eight modulation modes of communication signals are recognized automatically.Simulation results show that the proposed method can achieve high recognition rate at low SNR.
基金supported by the National Natural Science Foundation Project of CQ CSTC of China (2010BB2168)
文摘A new digital modulation recognition algorithm based on the instantaneous information is proposed to improve the recognition success rate in the low signal noise ratio (SNR). First denoising of the instantaneous information is optimized by wavelet filter, which can improve the recognition ability at low SNR. Besides the existing 3 key feature parameters, 3 new key feature parameters are proposed to be used as the decision criteria for identifying different types of digital modulation, which simplifies the recognition process and improves the recognition ability at low SNR. The simulations demonstrate that all modulation types of interest have been classified with success rate of no lower than 99 % when SNR is 10dB. Even if the SNR is lower than 5 dB, the success rate is over 95.4% for most of the modulation types.
基金supported by the National Natural Science Foundation of China under Grant 62061039in part by Key project of Ningxia Natural Science Foundation under Grant 2020AAC02006.
文摘Software defined radio(SDR)is a wireless communication technology that uses modern software to control the traditional“pure hardware circuit”.It can provide an effective and secure solution to the problem of building multi-mode,multi-frequency and multifunction wireless communication equipment.Although the concept and application of SDR have been studied a lot,there is little discussion about the operating efficiency of the established system.For the purpose of shortening the delay of mapping and reducing the high computing load in the cloud,a radio monitoring system based on edge computing is developed to achieve the flexible,extensible and real-time monitoring of high-performance SDR applications.To promote the edge intelligence of deep learning(DL)service deployment through edge computing(EC),we developed an edge intelligence algorithm of convolutional neural network(CNN)based on attention mechanism to carry out modulation recognition(MR)of the edge signal and make MR closer to the antenna terminal.Through the experiment of the system and the edge algorithm,this thesis verifies the effectiveness of the developed multifunction radio signal monitoring system.
文摘This paper mainly studies the data characteristics of high order cumulants using digitally modulated signals, and constructs the identification feature parameters that can distinguish the signal modulation type by the high-order cumulants data of the digital modulation signal. Set the identification signal modulation type determination threshold based on the value of the identification feature parameter. The identification feature parameter value of the signal modulation type is compared with the set determination threshold, to realize the recognition of digital modulation signal. This identification method is implemented based on MATLAB design, with a 2ASK (2-ary Amplitude Shift Keying) signal, 4ASK (4-ary Amplitude Shift Keying) signal, 2PSK (2-ary Phase Shift Keying) signal, 4PSK (4-ary Phase Shift Keying) signal, 2FSK (2-ary Frequency Shift Keying) signal, 4FSK (4-ary Frequency Shift Keying) signal. The second, fourth and sixth order cumulants of the six signals were analyzed. Calculate the selected identification feature parameter value and the determination threshold to identify the six signals. The six signals have made MATLAB identification simulation. Simulation results show that this method is feasible and has high recognition rate. Simulation results verify that such recognition methods maintain a high recognition rate under conditions with low signal-to-noise ratio. This identification method can be extended to more MASK (M-ary Amplitude Shift Keying), MPSK (M-ary Phase Shift Keying), MFSK (M-ary Frequency Shift Keying), MQAM (M-ary Quadrature Amplitude Modulation) signal identification.
基金Supported by the National Natural Science Foundation of China (41001195)
文摘A novel approach (HGO-EAC) for hybrid genetic op-timization (GO) with elite ant colony (EAC) is proposed for the automatic modulation recognition of communication signals,through which we improve the basic ant colony algorithms by referencing elite strategy and present a new fusion strategy for genetic optimization and elite ant colony. This approach is used to train the neural networks as the classifier for modulation. Simula-tion results indicate good performance on an additive white Gaus-sian noise (AWGN) channel,with recognition rate reaching to 70% especially for CW even at signal-to-noise ratios as low as 5 dB. This approach can achieve a high recognition rate for the typical modulations such as CW,4ASK,4FSK,BPSK,and QAM16. Test result shows that it has better performance than BP algorithm and basic ant colony algorithms by achieving faster training and stronger robustness.
基金supported by the National Natural Science Foundation of China (60772062)the National Basic Research Program of China (2007CB310607)+1 种基金National Science and Technology Key Project (2009ZX03003-002)the Open Research Fund of National Mobile Communications Research Laboratory and Southeast University (N200813)
文摘In this article, a new effective method of cooperative modulation recognition (CMR) is proposed to recognize different modulation types of primary user for cognitive radio receivers. In the cognitive radio (CR) system, two CR users respectively send their feature parameters to the cooperative recognition center, which is composed of back propagation neural network (BPNN). With two users' cooperation and the application of an error back propagation learning algorithm with momentum, the center improves the performance of modulation recognition, especially when one of the CR users' signal-to-noise ratio (SNR) is low. To measure the performance of the proposed method, simulations are carried out to classify different types of modulated signals corrupted by additive white Gaussian noise (AWGN). The simulation results show that this cooperation algorithm has a better recognition performance than those without cooperation.
基金Project supported by National High-Technology Research and De-velopment Program(Grant No .863 -2002AA119010)
文摘To classify the frequency modulation signal, this paper employs a parameter invariant filter, which can transfer the frequency modulated information to variety of its envelope, and then extracts the histogram feature to classify the modulation type. This method can efficiently classify the type of a signal such as frequency modulation (FM), binary frequency shift keyiing (BFSK), quadrature frequency shift keying (QFSK), 8-ary frequency shift keying (8FSK), etc. It can easily be realized and is especially suitable to applications in software radio.
基金supported by the National Natural Science Foundation of China(No.71874081)Special Financial Grant from China Postdoctoral Science Foundation(No.2017T100366)Open Fund of Hebei Province Key laboratory of Research on data analysis method under dynamic electro-magnetic spectrum situation.
文摘It is particular important to identify the pattern of communication signal quickly and accurately at the airport terminal area with the increasing number of radio equipments.A signal modulation pattern recognition method based on compressive sensing and improved residual network is proposed in this work.Firstly,the compressive sensing method is introduced in the signal preprocessing process to discard the redundant components for sampled signals.And the compressed measurement signals are taken as the input of the network.Furthermore,based on a scaled exponential linear units activation function,the residual unit and the residual network are constructed in this work to solve the problem of long training time and indistinguishable sample similar characteristics.Finally,the global residual is introduced into the training network to guarantee the convergence of the network.Simulation results show that the proposed method has higher recognition efficiency and accuracy compared with the state-of-the-art deep learning methods.
基金Supported by the National Natural Science Foundation of China(No.61561031,61562058)the Natural Science Foundation of Gansu Province(No.1508RJZA054)
文摘In order to identify the multi-carrier orthogonal frequency division multiplexing(OFDM) and the single-carrier signal in the non-Gaussian noise environment, different features of the two signals are analyzed in terms of five parameters: generalized normalized fourth-order cumulant, the maximum value of the instantaneous amplitude power spectral density, absolute standard deviation of instantaneous phase on the section with weak signals, and position and numbers of the generalized cyclic spectrum's peak. The recognition method of the multi-carrier OFDM and single-carrier signal is proposed in the environment with alpha-stable distribution noise. Simulation results show that the recognition rate of the multi-carrier OFDM can reach 100% when the mixed signal to noise ratio(MSNR) is greater than-5 dB and the recognition rate can reach 90% for the single-carrier when the MSNR is greater than 2 dB.
文摘This paper presents work on modulated signal recognition using an artificial neural network (ANN) developed using the Python programme language. The study is basically on the analysis of analog modulated signals. Four of the best-known analog modulation types are considered namely: amplitude modulation (AM), double sideband (DSB) modulation, single sideband (SSB) modulation and frequency modulation (FM). Computer simulations of the four modulated signals are carried out using MATLAB. MATLAB code is used in simulating the analog signals as well as the power spectral density of each of the analog modulated signals. In achieving an accurate classification of each of the modulated signals, extensive simulations are performed for the training of the artificial neural network. The results of the study show accurate and correct performance of the developed automatic modulation recognition with average success rate above 99.5%.
文摘The relationship between Haar wavelet decomposition coefficients and modulated signal parame-ters is discussed. A new modulation classification method is presented. The new method uses the amplitude, frequency and phase information derived from Haar wavelet decomposition as feature vectors to distinguish the modulation types of M-ary Frequency-Shift Keying (MFSK), M-ary Phase-Shift Keying (MPSK) and Quadrature Amplitude Modulation (QAM) modulation types. A parallel combined classifier is designed based on these feature vectors. The overall successful recognition rate of 92.4% can be achieved even at a low Sig-nal-to-Noise Ratio (SNR) of 5dB.