期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Analysis of the elastic-plastic indentation properties of materials with varying ratio of hardness to Young’s modulus 被引量:1
1
作者 孙渊 王庆明 《Journal of Pharmaceutical Analysis》 SCIE CAS 2008年第3期178-182,共5页
The elastic-plastic indentation properties of materials with varying ratio of hardness to Young’s modulus(H/E) were analyzed with the finite element method. And the indentation stress fields of materials with varying... The elastic-plastic indentation properties of materials with varying ratio of hardness to Young’s modulus(H/E) were analyzed with the finite element method. And the indentation stress fields of materials with varying ratio H/E on the surface were studied by the experiment. The results show that the penetration depth, contact radius, plastic pile-up and the degree of elastic recovery depend strongly on the ratio H/E. Moreover, graphs were established to describe the relationship between the elastic-plastic indentation parameters and H/E. The established graphs can be used to predict the H/E of materials when compared with experimental data. 展开更多
关键词 elastic-plastic indentation properties ratio of hardness to Young’s modulus finite element analysis experimental study
下载PDF
Evolution of mechanical parameters of Shuangjiangkou granite under different loading cycles and stress paths
2
作者 Liangjie Gu Xia-Ting Feng +2 位作者 Rui Kong Chengxiang Yang Yuelin Xia 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1113-1126,共14页
Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock und... Surrounding rocks at different locations are generally subjected to different stress paths during the process of deep hard rock excavation.In this study,to reveal the mechanical parameters of deep surrounding rock under different stress paths,a new cyclic loading and unloading test method for controlled true triaxial loading and unloading and principal stress direction interchange was proposed,and the evolution of mechanical parameters of Shuangjiangkou granite under different stress paths was studied,including the deformation modulus,elastic deformation increment ratios,fracture degree,cohesion and internal friction angle.Additionally,stress path coefficient was defined to characterize different stress paths,and the functional relationships among the stress path coefficient,rock fracture degree difference coefficient,cohesion and internal friction angle were obtained.The results show that during the true triaxial cyclic loading and unloading process,the deformation modulus and cohesion gradually decrease,while the internal friction angle gradually increases with increasing equivalent crack strain.The stress path coefficient is exponentially related to the rock fracture degree difference coefficient.As the stress path coefficient increases,the degrees of cohesion weakening and internal friction angle strengthening decrease linearly.During cyclic loading and unloading under true triaxial principal stress direction interchange,the direction of crack development changes,and the deformation modulus increases,while the cohesion and internal friction angle decrease slightly,indicating that the principal stress direction interchange has a strengthening effect on the surrounding rocks.Finally,the influences of the principal stress interchange direction on the stabilities of deep engineering excavation projects are discussed. 展开更多
关键词 Triaxial cyclic loading and unloading test Stress path Deformation modulus and elastic deformation increment ratios Fracture degree Cohesion and internal friction angle
下载PDF
POLYMER NETWORK-POLY(ETHYLENE GLYCOL)COMPLEXES WITH SHAPE MEMORY EFFECT
3
作者 Yi-ping Cao +1 位作者 C.W.Yip 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2003年第1期29-33,共5页
The complexes of poly(methacrylic acid-co-methyl methacrylate) network with poly(ethylene glycol) stabilized byhydrogen bonds were prepared. By introducing the poly(ethylene glycol), a large difference in storage modu... The complexes of poly(methacrylic acid-co-methyl methacrylate) network with poly(ethylene glycol) stabilized byhydrogen bonds were prepared. By introducing the poly(ethylene glycol), a large difference in storage modulus below andabove the glass transition temperature occurred and the complexes exhibited shape memory behaviors. The morphology ofcomplexes was studied by using DSC, WAXD, and DMA. The results indicate that the fixed phase of this kind of novelshape memory materials is the network, and the reversible phase is the amorphous state of PEG:PMAA complex phase. Theshape recoverability almost reaches 100%. This type of complexes can be regarded as a novel shape memory network. 展开更多
关键词 Hydrogen bonded complex Shape memory effect Storage modulus ratio
下载PDF
Numerical Investigation into the Effect of Air Voids on the Anisotropy of Asphalt Mixtures
4
作者 陈俊 ZHANG Qianqian +2 位作者 WANG Hao WANG Linbing HUANG Xiaoming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期473-481,共9页
The aim of this study is to investigate the asphalt mixture anisotropy of both the modulus and Poisson's ratio due to air voids using a discrete element modeling simulation method. Three three-dimensional cubic digit... The aim of this study is to investigate the asphalt mixture anisotropy of both the modulus and Poisson's ratio due to air voids using a discrete element modeling simulation method. Three three-dimensional cubic digital samples of asphalt mixture with different shapes of single air void were built using discrete element software PFC^(3D). The aggregate gradation, air voids and mastic included in the digital samples were modeled using different contact models, with due consideration of the volumetric fractions of the different phases. Laboratory uniaxial complex modulus test and indirect tensile strength test were conducted to obtain material input parameters for numerical modeling. Simulation of the uniaxial cyclic compressive tests was performed on the three cubic samples loaded in three different directions. Dynamic modulus in three directions and Poisson's ratio in six directions were calculated from the compression stress-strain responses. Results show that both the modulus and Poisson's ratio are dependent on the preferential orientation of air voids. The anisotropy of the modulus and Poisson's ratio increases as the pressure loading on the asphalt mixture increases. Compared to the modulus, Poisson's ratio due to air voids has been shown to be more anisotropic. The maximum of Poisson's ratio and modulus is shown to be up to 80% and 11% higher than the minimum, respectively. 展开更多
关键词 anisotropy asphalt mixture air void discrete element modeling dynamic modulus Poisson's ratio
下载PDF
Enhanced micro/nano-tribological performance in partially crystallized 60NiTi film
5
作者 Wanjun HE Qunfeng ZENG 《Friction》 SCIE EI CAS CSCD 2021年第6期1635-1647,共13页
The microstructure,mechanical and micro/nano-tribological properties of the 60NiTi film annealed at different temperature were investigated.The results reveal that annealing as-deposited 60NiTi film at 300,375,and 600... The microstructure,mechanical and micro/nano-tribological properties of the 60NiTi film annealed at different temperature were investigated.The results reveal that annealing as-deposited 60NiTi film at 300,375,and 600℃ for 1 h leads to structural relaxation,partial crystallization and full crystallization,respectively.Compared with the structurally relaxed structure,the partially crystallized structure exhibits increased hardness but decreased elastic modulus.This is because that the elastic modulus is reduced by Voigt model while the hardness is improved by composite effect.Due to the highest hardness and ratio of hardness to elastic modulus(H/E),the partially crystallized 60NiTi film has the lowest penetration depth and residual depth(i.e.,groove depth).Besides,the results also reveal that ductile plowing is the dominant wear mechanism for all the annealed 60NiTi films.Under the condition of the ductile plowing,coefficient of friction and wear resistance are related to penetration depth and residual depth,respectively.Therefore,the partially crystallized 60NiTi film shows the best tribological performance at the micro/nano-scale.The current work not only highlights the important roles of hardness and H/E in improving the micro/nano-tribological properties but also concludes an efficient and simple method for simultaneously increasing hardness and H/E. 展开更多
关键词 60NiTi film partial crystallization micro/nano-friction HARDNESS ratio of hardness to elastic modulus
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部