Objective The Jilin-Liaoning area has widely spread Meso- and Neoproterozoic sediments and is always a focused area for researching Precambrian geology. Previous study has achieved a series of results about Neoprotero...Objective The Jilin-Liaoning area has widely spread Meso- and Neoproterozoic sediments and is always a focused area for researching Precambrian geology. Previous study has achieved a series of results about Neoproterozoic stratigraphy in this area, but the lack of precise geochronological data and signs of stratigraphic correlation has resulted in the long controversial stratigraphic age and regional correlation. During recent years,展开更多
Molar-tooth(MT) structure is an enigmatic sedimentary structure consisting of variously-shaped cracks and voids filled with a characteristically uniform,equant calcite microspar.It is globally distributed but temporal...Molar-tooth(MT) structure is an enigmatic sedimentary structure consisting of variously-shaped cracks and voids filled with a characteristically uniform,equant calcite microspar.It is globally distributed but temporally restricted to rocks from Neoarchean to Neoproterozoic age.The origin of MT structures has been debated for more than a century and the topic continues to be highly contentious.Some features of MT structure occurring in micritic limestones of the Mesoproterozoic Gaoyuzhuang Formation(ca.1500 Ma to ca.1400 Ma),Jixian section,Tianjin City,North China show that:1) there is a definite interface or lining,rich in organic material and pyrite,between the MT crack-filling calcite microspar and the micritic host rock,which is also rich in organic matter;2) the micritic host rocks are notable for the absence of stromatolites and microbial laminites;3) distinctive conglomeratic lag deposits made up of intraclasts of MT microspar result from storm reworking of the MT structures;4) the MT structure is associated with possible algal megafossils such as Chuaria;5) the MT microspar is made up of the larger calcite crystal and the MT crack is marked by the diversity of configurations;6) both the TOC content and the carbon-isotopic value(δ^(13)C_(PDB)) among the host rock, the MT microspar and the possible algae fossil are obviously different.For the forming mechanism of the Gaoyuzhuang MT structure,these features can still indicate that:A) the MT microspar was formed by rapid precipitation and lithification;B) the MT microspar precipitated directly within the cracks; C) the decomposition of organic matter within the host micrite might be the chief mechanism producing gas bubbles;D) microscale gas-sediment interaction led to the generation of the MT cracks and the precipitation of microspar therein;E) the MT cracks might represent the track of migration and expansion of gas bubbles,and that the recrystallization of host micrites cannot be eliminated during forming process of the MT microspar;F) the MT structure is occurred in early diagenetic period;and G) the formation of MT microspars is a complex diagenetic process.Therefore,model of the microbially-induced gas-bubble expansion and migration is the best interpretation for the formation of the MT structure.Effectively,MT structures are a type of sedimentary structure that is formed in the early diagenetic period and is related to microbial activities and organic matter degradation.展开更多
For more than a century, molar tooth structure (MTS) has been studied. The study developed in three stages. During the first stage (before 1980), researchers described three basic morphologies of MTS, mainly from ...For more than a century, molar tooth structure (MTS) has been studied. The study developed in three stages. During the first stage (before 1980), researchers described three basic morphologies of MTS, mainly from the Belt Supergroup in North America, and they provided several hypotheses for the origin of MTS. During the second stage (1980-1999), the frequent discoveries of MTS on all continents resulted in many detailed descriptions of their shape and in several hypotheses concerning the origin of MTS. Notably, hypotheses of MTS's origin such as seismic activity and biological activity were developed. Since 2000, research has progressed into a new stage (the third stage). This is due to discoveries of MTS in the Me- so-Neoproterozoic of China and elsewhere, and the ongoing debate on the seismic or biologi- cal origin is replaced by a hypothesis that involves gas expansion and chemically-controlled carbonate precipitation (both of them possibly affected by biological activities). This latter idea has gradually been commonly recognized as the mainstream theory. Despite continued disa- greements, researchers now agree that microsparry calcite played a controlling role regarding the development and the global distribution of MTS in time and space during the Proterozoic, the morphological diversity, and the impact on the sedimentary environment. The present con- tribution analyses the three major hypotheses regarding the origin of MTS; it also discusses the shortcomings of the hypotheses regarding a seismic or biologic origin, and it details the modern hypothesis that links formation of cracks to the precipitation of sparry calcite. It is de- duced that important questions dealing with the Precambrian can be answered, among other aspects regarding the depositional palaeogeography and stratigraphic correlations.展开更多
Based on a study of Neoproterozoic carbonates in the Jilin-Liaoning-Xuzhou-Huaiyang area, especially its cyclic sequence stratigraphy and Sr isotopes, two maximum sea flooding events (at 820 Ma and 835 Ma) have been i...Based on a study of Neoproterozoic carbonates in the Jilin-Liaoning-Xuzhou-Huaiyang area, especially its cyclic sequence stratigraphy and Sr isotopes, two maximum sea flooding events (at 820 Ma and 835 Ma) have been identified. The resulting isochronous stratigraphic correlation proves that these Precambrian strata were connected between the Qingbaikou and the Nanhuan systems with a time range from 750 Ma to 850 Ma. The disappearance of microsparite carbonate and coming of a glacial stage offer important evidence for worldwide stratigraphic correlation and open a window for further correlation of the stratigraphic successions across the Sino-Korean and Yangtze Plates. A new correlation scheme is therefore provided based on our work.展开更多
Molar tooth structure (MTS) represented by complex ptygmatical shapes is widely distributed in the Proterozoic of the world. MTS filled by fine, equant sparry calcite (or dolomite) displays an abrupt contact with ...Molar tooth structure (MTS) represented by complex ptygmatical shapes is widely distributed in the Proterozoic of the world. MTS filled by fine, equant sparry calcite (or dolomite) displays an abrupt contact with hosting rocks, which are mainly composed of carbonaceous micrites and fine-grained carbonates with local silts and stormdominated deposits with graded, cross or wave beddings, numerous erosional surfaces and truncated and fills or guttered bases. Occurrence of MTS suggests a result of the constraint of sedimentary facies, and the storm-base in ramp settings is the maximum depth for the formation of MTS. Vertical succession of MTS-bearing carbonates shows a deposition stacked by high-frequency shallow subtidal and peritidal cycles. An individual cyclic MTS-bearing sequence is characterized by thinning, shallowing and dynamic decreasing-upward, and peritidal caps of purple red iron and organic carbonaceous sediments with more complicated shapes of MTS are common on the top of individual MTS-bearing sequences.展开更多
Both the macroscopic feature and the sequence-stratigraphic position of the molar-tooth structure developed in the third member of the Gaoyuzhuang (高于庄) Formation at the Jixian (蓟县) Section in Tianjin (天津...Both the macroscopic feature and the sequence-stratigraphic position of the molar-tooth structure developed in the third member of the Gaoyuzhuang (高于庄) Formation at the Jixian (蓟县) Section in Tianjin (天津) can provide some useful information about its origin and can reveal some problems to be further researched in the future. The Mesoproterozoic Gaoyuzhuang Formation is a set of 1 600 m thick carbonate strata. This formation can be divided into four members. The first member is mainly made up of stromatolitic dolomites; the second is marked by a set of manganese dolomites; the third is mainly composed of lamina limestones with the development of molar-tooth strcutures; the fourth is a set of stromatolitic-lithoherm dolomites. According to lithofacies and its succession, several types of meter-scale cycles can be discerned in the Gaoyuzhuang Formation: the L-M type, the subtidal type and the peritidal type. There is a regularly vertical stacking pattern for meter-scale cycles in the third-order sequence. Therefore, the Mesoproterozoic Gaoyuzhuang Formation can be divided into 13 third-order sequences (SQ1 to SQ13 ) and can further be grouped into 4 second-order sequences. The third member is marked by lamina limestones and can be grouped into three third-order sequences (SQ9 to SQ11 ). The molar-tooth structure is developed in the middle part of the third sequence, i.e. SQH , in the third member. Several features of this kind of molar-tooth structure reflect some features of carbonate sedimentation in the Precambrian, such as the particular configuration, abundant organic matter, and easy silication. Stromatolites are chiefly formed in a shallow tidal-flat environment; lamina are mainly formed in the shallow ramp and molar-tooth structures are mainly generated in a relatively more deep-water environment from the middle to the deep ramp. Therefore, similar to stromatolite and lamina, the molartooth structure might also be a kind of bio-sedimentation structure. This suggestion is based on macroscopic observation and the sedimentary-facies analysis of the molar-tooth structures from the sequencestratigraphic position. These features of Precambrian sedimentation also reveal the problem of Precambrian carbonate sedimentation. With more detailed study, a more practical solution for these problems may be obtained in the future.展开更多
Although its origin has not yet reached a consensus so far, MTS (Molar-Tooth Structure) has been documented for more than 100 years. Current study reports a discovery of MTS from the Mesoproterozoic Wumishan Formati...Although its origin has not yet reached a consensus so far, MTS (Molar-Tooth Structure) has been documented for more than 100 years. Current study reports a discovery of MTS from the Mesoproterozoic Wumishan Formation, Lingyuan, Yanshan Region, North China, and the features and geological implications of MTS are further discussed. Here, straitigraphic horizons of MTS's occurrences show that it was mainly located within the top part of the Wumishan Formation, i.e., limestone unit. Four kinds of morphology of MTS, i.e., fine fusiform, debris, ribbon, ptigmatic and nodular (irregular), were recognized and thought to be highly related to the sedimentary environments and facies. Geochemistry of MTS including oxides, trace elements and C, O and Sr isotopes indicates that the horizons of MTS-bearing is of higher Sr/Ba and Ca/Mg ratios, lower positive ~13C and highly negative 3180 values than the adjacent stratigraphic levels of rare MTS. Lithology, morphology and geochemistry of MTS in the Wumishan Formation suggest that MTS occurs mainly in shallow subtidal near the storm wave base, which is typically characterized by warm temperature, oversaturated calcium carbonate seawater and high organic productivity. Furthermore, occasional enrichment of algae bacteria here is more favorable for the calcification of calcium oozes and catalytic for MTS. C isotope composition of the Wumishan Formation and MTS of this study is well correlated with that of the Mesoproterozoic Belt Supergroup, North America and Riphean, Siberia, suggesting that MTS acts as a sedimentary record responding to global changes and is a perfect indicator in Precambrian stratigraphic correlation worldwide.展开更多
Molar tooth(briefly called MT) carbonate is one of the Proterozoic carbonates with enigmatic sedimentary structure. According to the morphology of MT,it can be divided into two main genesis-morphology types,i.e.,autoc...Molar tooth(briefly called MT) carbonate is one of the Proterozoic carbonates with enigmatic sedimentary structure. According to the morphology of MT,it can be divided into two main genesis-morphology types,i.e.,autochthonous and allochthonous,and each type can be further divided into a series of subtypes. The autochthonous MT can be divided into filamentous(MF1) ,ribbon,nodular and dotted type(MF4) ,in which the ribbon one can be subdivided into simple vertical(MF2) and complex ribbon(MF3) ,broken ribbon by storm in situ(MF5) and MT within nodular limestone(MF6) . Allochthonous MT includes conglomerate clasts and horizontal detritus. Studying on the links between MT and the host rocks on five stratigraphic sections in the southeastern Jilin and eastern Liaoning indicates that the morphology of MT is closely related to host rocks,and seven genetic types by relationships between MT and the host rocks with facies interpretations are classified and discussed in this paper. The sedimentary environments of MT formation will be diverse if their morphologies are different.展开更多
This paper reported a case of fusion between an impacted third molar and a supernumerary tooth, in which a surgical intervention was carried out, with the objective of removing the dental elements. The panoramic radio...This paper reported a case of fusion between an impacted third molar and a supernumerary tooth, in which a surgical intervention was carried out, with the objective of removing the dental elements. The panoramic radiography was complemented by the Donovan's radiographic technique; but because of the proximity of the dental element to the mandibular ramus, it was not possible to have a final fusion diagnosis. Hence, the Cone-Beam Computed Tomography--which provides precise three- dimensional information--was used to determinate the fusion diagnosis and also to help in the surgical planning. In this case report we observed that the periapical, occlusal and panoramic were not able to show details which could only be examined through the cone-beam computed tomo- graphy.展开更多
Along with the progress in research on the Precambrian, Molar-tooth carbonates (simplified as MT, or microsparite carbonates or MT structure) which were formed in the Middle-Late Proterozoic have become a hot subject ...Along with the progress in research on the Precambrian, Molar-tooth carbonates (simplified as MT, or microsparite carbonates or MT structure) which were formed in the Middle-Late Proterozoic have become a hot subject recently. The Proterozoic Molar-tooth (MT) carbonate rocks refer to those Meso- to Neoproterozoic (1600-650 Ma) carbonates with MT structure, i.e., a series of peculiar, ptygmatically folded and spar-filled cracks in fine-grained carbonates of Precambrian age, located in the environment of mid- to inner ramp and shallow platform. MTS, like a bridge connecting the inorganic world with the organic one, are closely related to the evolution of paleo-oceans, atmosphere and biosphere. Their development and/or recession are/is related to the origin of life and the abruption of sedimentary geochemistry events of marine carbonates. By using modern instruments and testing methods adequately, the contents of oxides in sandstones were measured and the REE distribution pattern curves were established; an accurate value of isotopic ratio of 87Sr/86Sr was obtained, that is, the age of MT formation is about 750-900 Ma; C and O isotopes of some fresh micrite limestone samples were analyzed; the energy spectrum analysis revealed that the MT consists mainly of microspar calcite, while as for its chemical composition, the matrix shows outstanding peaks of Ca, Mg, Al, Si, and K. The geochemical indicators proved that Neoproterozoic MT carbonates in the Jilin-Liaoning region were developed at the margin of a stable continent, in the torrid zone where the paleo-temperature was about 50℃, the seawater had normal salinity when MT was formed during the Wanlong period in southern Jilin and during the Yingchengzi and Xingmincun periods in eastern Liaoning. The sedimentary environment was located in the inner ramp. In summary, it is of great importance to understand the origin of MT, ascertain the paleo-climate and paleo-environment characteristics, constrain the age and the stratigraphic division and comparison of the Proterozoic so as to study the geochemical characteristics of MT carbonates and their formation environment.展开更多
基金supported by the Nature Science Foundation of China(grant No.41472082)China Geological Survey(grant No.121201102000150012)
文摘Objective The Jilin-Liaoning area has widely spread Meso- and Neoproterozoic sediments and is always a focused area for researching Precambrian geology. Previous study has achieved a series of results about Neoproterozoic stratigraphy in this area, but the lack of precise geochronological data and signs of stratigraphic correlation has resulted in the long controversial stratigraphic age and regional correlation. During recent years,
基金the project"A Study of the Cycles and Events for the Mesoproterozoic Jixian System in the Yan Mountain Region,northern China"(Nos.49802012, 40472065)financially supported by the National Foundation of Natural Sciences of China
文摘Molar-tooth(MT) structure is an enigmatic sedimentary structure consisting of variously-shaped cracks and voids filled with a characteristically uniform,equant calcite microspar.It is globally distributed but temporally restricted to rocks from Neoarchean to Neoproterozoic age.The origin of MT structures has been debated for more than a century and the topic continues to be highly contentious.Some features of MT structure occurring in micritic limestones of the Mesoproterozoic Gaoyuzhuang Formation(ca.1500 Ma to ca.1400 Ma),Jixian section,Tianjin City,North China show that:1) there is a definite interface or lining,rich in organic material and pyrite,between the MT crack-filling calcite microspar and the micritic host rock,which is also rich in organic matter;2) the micritic host rocks are notable for the absence of stromatolites and microbial laminites;3) distinctive conglomeratic lag deposits made up of intraclasts of MT microspar result from storm reworking of the MT structures;4) the MT structure is associated with possible algal megafossils such as Chuaria;5) the MT microspar is made up of the larger calcite crystal and the MT crack is marked by the diversity of configurations;6) both the TOC content and the carbon-isotopic value(δ^(13)C_(PDB)) among the host rock, the MT microspar and the possible algae fossil are obviously different.For the forming mechanism of the Gaoyuzhuang MT structure,these features can still indicate that:A) the MT microspar was formed by rapid precipitation and lithification;B) the MT microspar precipitated directly within the cracks; C) the decomposition of organic matter within the host micrite might be the chief mechanism producing gas bubbles;D) microscale gas-sediment interaction led to the generation of the MT cracks and the precipitation of microspar therein;E) the MT cracks might represent the track of migration and expansion of gas bubbles,and that the recrystallization of host micrites cannot be eliminated during forming process of the MT microspar;F) the MT structure is occurred in early diagenetic period;and G) the formation of MT microspars is a complex diagenetic process.Therefore,model of the microbially-induced gas-bubble expansion and migration is the best interpretation for the formation of the MT structure.Effectively,MT structures are a type of sedimentary structure that is formed in the early diagenetic period and is related to microbial activities and organic matter degradation.
基金sponsored by the National Natural Science Foundation of China (40772078,41472082)
文摘For more than a century, molar tooth structure (MTS) has been studied. The study developed in three stages. During the first stage (before 1980), researchers described three basic morphologies of MTS, mainly from the Belt Supergroup in North America, and they provided several hypotheses for the origin of MTS. During the second stage (1980-1999), the frequent discoveries of MTS on all continents resulted in many detailed descriptions of their shape and in several hypotheses concerning the origin of MTS. Notably, hypotheses of MTS's origin such as seismic activity and biological activity were developed. Since 2000, research has progressed into a new stage (the third stage). This is due to discoveries of MTS in the Me- so-Neoproterozoic of China and elsewhere, and the ongoing debate on the seismic or biologi- cal origin is replaced by a hypothesis that involves gas expansion and chemically-controlled carbonate precipitation (both of them possibly affected by biological activities). This latter idea has gradually been commonly recognized as the mainstream theory. Despite continued disa- greements, researchers now agree that microsparry calcite played a controlling role regarding the development and the global distribution of MTS in time and space during the Proterozoic, the morphological diversity, and the impact on the sedimentary environment. The present con- tribution analyses the three major hypotheses regarding the origin of MTS; it also discusses the shortcomings of the hypotheses regarding a seismic or biologic origin, and it details the modern hypothesis that links formation of cracks to the precipitation of sparry calcite. It is de- duced that important questions dealing with the Precambrian can be answered, among other aspects regarding the depositional palaeogeography and stratigraphic correlations.
文摘Based on a study of Neoproterozoic carbonates in the Jilin-Liaoning-Xuzhou-Huaiyang area, especially its cyclic sequence stratigraphy and Sr isotopes, two maximum sea flooding events (at 820 Ma and 835 Ma) have been identified. The resulting isochronous stratigraphic correlation proves that these Precambrian strata were connected between the Qingbaikou and the Nanhuan systems with a time range from 750 Ma to 850 Ma. The disappearance of microsparite carbonate and coming of a glacial stage offer important evidence for worldwide stratigraphic correlation and open a window for further correlation of the stratigraphic successions across the Sino-Korean and Yangtze Plates. A new correlation scheme is therefore provided based on our work.
文摘Molar tooth structure (MTS) represented by complex ptygmatical shapes is widely distributed in the Proterozoic of the world. MTS filled by fine, equant sparry calcite (or dolomite) displays an abrupt contact with hosting rocks, which are mainly composed of carbonaceous micrites and fine-grained carbonates with local silts and stormdominated deposits with graded, cross or wave beddings, numerous erosional surfaces and truncated and fills or guttered bases. Occurrence of MTS suggests a result of the constraint of sedimentary facies, and the storm-base in ramp settings is the maximum depth for the formation of MTS. Vertical succession of MTS-bearing carbonates shows a deposition stacked by high-frequency shallow subtidal and peritidal cycles. An individual cyclic MTS-bearing sequence is characterized by thinning, shallowing and dynamic decreasing-upward, and peritidal caps of purple red iron and organic carbonaceous sediments with more complicated shapes of MTS are common on the top of individual MTS-bearing sequences.
基金This paper is financially supported by the National Natural Science Foundation of China (Nos .49802012 ,40472065) .
文摘Both the macroscopic feature and the sequence-stratigraphic position of the molar-tooth structure developed in the third member of the Gaoyuzhuang (高于庄) Formation at the Jixian (蓟县) Section in Tianjin (天津) can provide some useful information about its origin and can reveal some problems to be further researched in the future. The Mesoproterozoic Gaoyuzhuang Formation is a set of 1 600 m thick carbonate strata. This formation can be divided into four members. The first member is mainly made up of stromatolitic dolomites; the second is marked by a set of manganese dolomites; the third is mainly composed of lamina limestones with the development of molar-tooth strcutures; the fourth is a set of stromatolitic-lithoherm dolomites. According to lithofacies and its succession, several types of meter-scale cycles can be discerned in the Gaoyuzhuang Formation: the L-M type, the subtidal type and the peritidal type. There is a regularly vertical stacking pattern for meter-scale cycles in the third-order sequence. Therefore, the Mesoproterozoic Gaoyuzhuang Formation can be divided into 13 third-order sequences (SQ1 to SQ13 ) and can further be grouped into 4 second-order sequences. The third member is marked by lamina limestones and can be grouped into three third-order sequences (SQ9 to SQ11 ). The molar-tooth structure is developed in the middle part of the third sequence, i.e. SQH , in the third member. Several features of this kind of molar-tooth structure reflect some features of carbonate sedimentation in the Precambrian, such as the particular configuration, abundant organic matter, and easy silication. Stromatolites are chiefly formed in a shallow tidal-flat environment; lamina are mainly formed in the shallow ramp and molar-tooth structures are mainly generated in a relatively more deep-water environment from the middle to the deep ramp. Therefore, similar to stromatolite and lamina, the molartooth structure might also be a kind of bio-sedimentation structure. This suggestion is based on macroscopic observation and the sedimentary-facies analysis of the molar-tooth structures from the sequencestratigraphic position. These features of Precambrian sedimentation also reveal the problem of Precambrian carbonate sedimentation. With more detailed study, a more practical solution for these problems may be obtained in the future.
基金supported by the National Natural Science Foundation(No.40772078)the marineoil and gases exploration progress project of SINOPIC'Petroleum Geology Research and Oil Potential Prospect of the Precambrian stratigraphy of the North China Platform(No.GB0800-06-ZS-350)Foundation of Geology Institute of CAGS(No.J0903,No.J1106)
文摘Although its origin has not yet reached a consensus so far, MTS (Molar-Tooth Structure) has been documented for more than 100 years. Current study reports a discovery of MTS from the Mesoproterozoic Wumishan Formation, Lingyuan, Yanshan Region, North China, and the features and geological implications of MTS are further discussed. Here, straitigraphic horizons of MTS's occurrences show that it was mainly located within the top part of the Wumishan Formation, i.e., limestone unit. Four kinds of morphology of MTS, i.e., fine fusiform, debris, ribbon, ptigmatic and nodular (irregular), were recognized and thought to be highly related to the sedimentary environments and facies. Geochemistry of MTS including oxides, trace elements and C, O and Sr isotopes indicates that the horizons of MTS-bearing is of higher Sr/Ba and Ca/Mg ratios, lower positive ~13C and highly negative 3180 values than the adjacent stratigraphic levels of rare MTS. Lithology, morphology and geochemistry of MTS in the Wumishan Formation suggest that MTS occurs mainly in shallow subtidal near the storm wave base, which is typically characterized by warm temperature, oversaturated calcium carbonate seawater and high organic productivity. Furthermore, occasional enrichment of algae bacteria here is more favorable for the calcification of calcium oozes and catalytic for MTS. C isotope composition of the Wumishan Formation and MTS of this study is well correlated with that of the Mesoproterozoic Belt Supergroup, North America and Riphean, Siberia, suggesting that MTS acts as a sedimentary record responding to global changes and is a perfect indicator in Precambrian stratigraphic correlation worldwide.
基金Supported by the National Natural Scientific Foundation of China (Grant No. 40772078)International Geological Correlation Program (IGCP447), (Grant No. SC/GEO/546/447)+1 种基金Foundation of Geology Iustitute, CAGS (Grant No. J0903)Natural Scientific Development Foundation of Yangtze University (Grant No. 2007ZP005)
文摘Molar tooth(briefly called MT) carbonate is one of the Proterozoic carbonates with enigmatic sedimentary structure. According to the morphology of MT,it can be divided into two main genesis-morphology types,i.e.,autochthonous and allochthonous,and each type can be further divided into a series of subtypes. The autochthonous MT can be divided into filamentous(MF1) ,ribbon,nodular and dotted type(MF4) ,in which the ribbon one can be subdivided into simple vertical(MF2) and complex ribbon(MF3) ,broken ribbon by storm in situ(MF5) and MT within nodular limestone(MF6) . Allochthonous MT includes conglomerate clasts and horizontal detritus. Studying on the links between MT and the host rocks on five stratigraphic sections in the southeastern Jilin and eastern Liaoning indicates that the morphology of MT is closely related to host rocks,and seven genetic types by relationships between MT and the host rocks with facies interpretations are classified and discussed in this paper. The sedimentary environments of MT formation will be diverse if their morphologies are different.
文摘This paper reported a case of fusion between an impacted third molar and a supernumerary tooth, in which a surgical intervention was carried out, with the objective of removing the dental elements. The panoramic radiography was complemented by the Donovan's radiographic technique; but because of the proximity of the dental element to the mandibular ramus, it was not possible to have a final fusion diagnosis. Hence, the Cone-Beam Computed Tomography--which provides precise three- dimensional information--was used to determinate the fusion diagnosis and also to help in the surgical planning. In this case report we observed that the periapical, occlusal and panoramic were not able to show details which could only be examined through the cone-beam computed tomo- graphy.
基金This Project was funded by the International Geological Comparative Program 447 (IGCP447) (No. SC/GE0/546/447);the National Natural Science Foundation of China (Grant No. 40172043);the Natural Science Developmental Fund of the Yangtze University.
文摘Along with the progress in research on the Precambrian, Molar-tooth carbonates (simplified as MT, or microsparite carbonates or MT structure) which were formed in the Middle-Late Proterozoic have become a hot subject recently. The Proterozoic Molar-tooth (MT) carbonate rocks refer to those Meso- to Neoproterozoic (1600-650 Ma) carbonates with MT structure, i.e., a series of peculiar, ptygmatically folded and spar-filled cracks in fine-grained carbonates of Precambrian age, located in the environment of mid- to inner ramp and shallow platform. MTS, like a bridge connecting the inorganic world with the organic one, are closely related to the evolution of paleo-oceans, atmosphere and biosphere. Their development and/or recession are/is related to the origin of life and the abruption of sedimentary geochemistry events of marine carbonates. By using modern instruments and testing methods adequately, the contents of oxides in sandstones were measured and the REE distribution pattern curves were established; an accurate value of isotopic ratio of 87Sr/86Sr was obtained, that is, the age of MT formation is about 750-900 Ma; C and O isotopes of some fresh micrite limestone samples were analyzed; the energy spectrum analysis revealed that the MT consists mainly of microspar calcite, while as for its chemical composition, the matrix shows outstanding peaks of Ca, Mg, Al, Si, and K. The geochemical indicators proved that Neoproterozoic MT carbonates in the Jilin-Liaoning region were developed at the margin of a stable continent, in the torrid zone where the paleo-temperature was about 50℃, the seawater had normal salinity when MT was formed during the Wanlong period in southern Jilin and during the Yingchengzi and Xingmincun periods in eastern Liaoning. The sedimentary environment was located in the inner ramp. In summary, it is of great importance to understand the origin of MT, ascertain the paleo-climate and paleo-environment characteristics, constrain the age and the stratigraphic division and comparison of the Proterozoic so as to study the geochemical characteristics of MT carbonates and their formation environment.