Molecular deposition filming flooding (MDFF) is a novel oil recovery technique based on the thermopositive monolayer electrostatic adsorption of the MDFF agent on different interfaces within reservoir systems. In this...Molecular deposition filming flooding (MDFF) is a novel oil recovery technique based on the thermopositive monolayer electrostatic adsorption of the MDFF agent on different interfaces within reservoir systems. In this paper, the adsorption property of the MDFF agent, MD-1, on quartz sand has been studied through adsorption experiments at different pH and temperatures. Experimental data are also analyzed kinetically and thermodynamically. The results show that the adsorption of MD-1 on quartz sand takes place mainly because of electrostatic interactions, which corresponds to adsorption that increases with pH. Kinetic analyses show that at a higher pH the activation energy for adsorption gets lower and, therefore, the adsorption becomes quicker for MD-1 on quartz sand. Thermodynamic analyses show that pH plays an important role in the adsorption of MD-1 on quartz sand. At a higher pH, more negative surface charges result in the increase of electrostatic interactions between MD-1 and quartz sand. Therefore, the saturated adsorption amount increases and more adsorption heat will be released.展开更多
An overview of the advances in studies on tribology of molecular deposition (MD) films is presented here to summarize the studies of nanofrictional properties, adhesion, wear and mechanical behavior, as well as the ...An overview of the advances in studies on tribology of molecular deposition (MD) films is presented here to summarize the studies of nanofrictional properties, adhesion, wear and mechanical behavior, as well as the molecular dynamics simulation of nanotribological properties of the film in the last decade. Some key research topics which need to be investigate further are addressed.展开更多
Silicon-doped diamond-like carbon (Si-DLC) films possess the potential to improve wear performance of DLC films in humid atmospheres and at higher temperatures. But many experimental results of Si-DLC films show tha...Silicon-doped diamond-like carbon (Si-DLC) films possess the potential to improve wear performance of DLC films in humid atmospheres and at higher temperatures. But many experimental results of Si-DLC films show that their structure and mechanical properties have changed greatly with the increasing silicon content. Therefore, molecular dynamics (MD) simulations were used to generate hydrogen-free Si-DLC films and study their nano-indentation process under the interaction of a diamond indenter. The results show that sp3/sp2(C) (only carbon atoms) always decreases with the increasing silicon content. But sp3/sp2(C+Si) ratio increases firstly and reaches a maximum at the silicon content of 0.2, and then decreases with the further increase of the silicon content. Bulk modulus and hardness of the Si-DLC films both decrease with the increasing of the silicon content, which has the same trend with Papakonstantinou and Ikeyama's results. It is concluded that the hardness of the Si-DLC films is dependent on sp3/sp2(C), not sp3/sp2(C+Si).展开更多
Molecular dynamics(MD) simulations using the polymer consistent force field(PCFF) were adopted to investigate the pressure and thickness dependent density of squalane film in a nanogap at 373 K, with three differe...Molecular dynamics(MD) simulations using the polymer consistent force field(PCFF) were adopted to investigate the pressure and thickness dependent density of squalane film in a nanogap at 373 K, with three different initial film thicknesses, and for a wide range of pressures. The equivalent densities predicted by MD simulations were compared with the empirical data. Results show that the squalane atoms tend to form layers parallel to the confining substrates but the orientations of squalane molecules are irregular throughout the film. In addition, distinct excluded volumes are not found at the interfaces of the film and substrates. Furthermore, with the same initial film thickness h_0, the film thickness h and compressibility decrease with increasing pressure, but the compressibility is similar for films with different initial film thicknesses. The equivalent densities predicted by MD simulations with the maximum initial film thickness(9.44 nm) are accurate to the values of Tait equation. The MD simulation with adequate initial film thickness can accurately and conveniently predict the bulk densities of lubricants.展开更多
Coarse-grained molecular dynamics simulations were carried out to investigate the dewetting behavior of a polymer thin film on partial wetting solid surface at the early stage of the dewetting process. Spontaneous dew...Coarse-grained molecular dynamics simulations were carried out to investigate the dewetting behavior of a polymer thin film on partial wetting solid surface at the early stage of the dewetting process. Spontaneous dewetting is initiated by removing a band of strip from both the ends of the liquid polymer film which has achieved equilibrium. The solid-liquid interaction and temperature were varied to show their influence on the dewetting dynamics during dewetting as well as the shape evolution of the liquid polymer film. As is consistent with the results obtained in previous researches, the liquid film recedes at a constant speed initially with different solid-liquid couplings and tempe- ratures. Furthermore, smaller coupling parameters or higher temperatures tend to accelerate the recession speed of the liquid film and shorten the constant-speed recession duration. Obvious rims were not always observed. Both coupling parameter and temperature can influence the emergence of the rims.展开更多
Two nanomechanical properties of the moleculor deposition ( MD ) film deposited on the Au substrate were studied. The first is its nanotribological property investigated by an atomic force microscope, which indicate...Two nanomechanical properties of the moleculor deposition ( MD ) film deposited on the Au substrate were studied. The first is its nanotribological property investigated by an atomic force microscope, which indicates that the deposition of the MD film could reduce the frictional force. The second is its nanoindent property studied by a nano-indenter. The results show that, after the MD film is deposited on the Au substrate , the elastic modulus, hardness and load decreased all, moreover, the elastic deformation increased and the plastic deformation decreased, which indicates that the MD film can improve the nanomechanical properties of the Au substrate.展开更多
In order to understand lubrication mechanism at the nanoscale, researchers have used many physical experimental approaches, such as surface force apparatus, atomic force microscopy and ball-on-disk tribometer. The res...In order to understand lubrication mechanism at the nanoscale, researchers have used many physical experimental approaches, such as surface force apparatus, atomic force microscopy and ball-on-disk tribometer. The results show that the variation rules of the friction force, film thicknessand viscosity of the lubricant at the nanoscale are different from elastohydrodynamic lubrication (EHL). It is speculated that these differences are attributed to the special arrangement of the molecules at the nanoscale. However, it is difficult to obtain the molecular orientation and distribution directly from the lubricant molecules in these experiments. In recent years, more and more attention has been paid to use new techniques to overcome the shortcomings of traditional experiments, including various spectral methods. The most representative achievements in the experimental research of molecular arrangement are reviewed in this paper: The change of film structure of a liquid crystal under confinement has been obtained using X-ray method. The molecular orientation change of lubricant films has been observed using absorption spectroscopy. Infrared spectroscopy has been used to measure the anisotropy of molecular orientation in the contact region when the lubricant film thickness is reduced to a few tens of nanometers. In situ Raman spectroscopy has been performed to measure the molecular orientation of the lubricant film semi-quantitatively. These results prove that confinement and shear in the contact region can change the arrangement of lubricant molecules. As a result, the lubrication characteristics are affected. The shortages of these works are also discussed based on practicable results. Further work is needed to separate the information of the solid-liquid interface from the bulk liquid film.展开更多
The ion selectivity of nickel hexacyanoferrate thin film to alkali cations in ESIX (electrochemically switched ion exchange) processes was investigated using molecular dynamics(MD) techniques; water and cation (Na+ an...The ion selectivity of nickel hexacyanoferrate thin film to alkali cations in ESIX (electrochemically switched ion exchange) processes was investigated using molecular dynamics(MD) techniques; water and cation (Na+ and Cs+) intercalation, configuration, and dynamics in reduced nickel hexacyanoferrate structures with different cation combinations were studied and compared with the experimental results. In the simulations, water was represented by an extended simple point-charge(SPC/E) model, and all other atomic interactions were represented by a universal force field(UFF). The potential energies of various cations combination (Cs+ and Na+) in reduced i-NiHCF and 1 mol/L Cs/NaCl mixed solution were obtained. In most cases, the total potential energy of the solid is reduced when water is intercalated into the various reduced NiHCF structures. Combining the solid and the solution simulation results, it is shown that the solid composition of 3Cs+/1Na+ is the stablest structure form (NaCs3Ni4[Fe(CN)6]3) over a range of solution compositions.展开更多
The orientation and structural characterization of the ultrathin film of azobenzene-containing amphiphilic compound, C_ 12AzoNaph(1,4)C_6N +Br -, were studied in the present study. The compound can form a stable m...The orientation and structural characterization of the ultrathin film of azobenzene-containing amphiphilic compound, C_ 12AzoNaph(1,4)C_6N +Br -, were studied in the present study. The compound can form a stable monolayer with sodium dextrin sulfate(SDS) by means of electrostatic interaction. Fourier-transform infrared(FT-IR) and near-infrared surface-enhanced Raman scattering(NIR-SERS) spectroscopies were used to study the orientation and characterize the structure of the Langmuir-Blodgett(LB) film and the dipping film. The FT-IR spectra indicate that the alkyl tail is nearly perpendicular to the substrate surface without any aggregation and adopts largely trans-zigzag conformation in the LB film. The NIR-SERS spectra demonstrate that the chromorphoric part in C_ 12AzoNaph(1,4)C_6N +Br is also nearly perpendicular to the surface of silver substrate both in the dipping film and the LB film. A new 'sandwiched system' model was designed to investigate the orientation and structural characterization of the chromophoric part in the multi-monolayer LB films on the non-SERS active substrate. The SERS mechanism of the 'sandwiched system' is discussed in the present paper.展开更多
A Molecular Dynamics (MD) simulation with Tersoff empirical many-bodypotential has been employed to investigate the growth processes of diamond film with energeticspecies deposition. In the present study, we have stud...A Molecular Dynamics (MD) simulation with Tersoff empirical many-bodypotential has been employed to investigate the growth processes of diamond film with energeticspecies deposition. In the present study, we have studied the reaction probabilities of energeticspecies with energies of 0.1 e V to 10eV at the substrate temperature of 1100K. In the cases of thediamond growth on the surface with H passivation, the reaction probability of hydrocarbon speciesconsiderably increases when the species energy is higher than 2eV. This means that the diamond filmcan grow in the case of high incident species energy without the process of hydrogen abstraction,which is needed in the case of incident species with low energy. The reaction mechanism of energeticspecies on hydrogen passivated diamond surface is also discussed.展开更多
We report the successful growth of the tetragonal FeS film with one or two unit-cell (UC) thickness on SrTiO33(001) substrates by molecular beam epitaxy. Large lattice constant mismatch with the substrate leads to...We report the successful growth of the tetragonal FeS film with one or two unit-cell (UC) thickness on SrTiO33(001) substrates by molecular beam epitaxy. Large lattice constant mismatch with the substrate leads to high density of defects in single-UC FeS, while it has been significantly reduced in the double-UC thick film due to the lattice relaxation. The scanning tunneling spectra on the surface of the FeS thin film reveal the electronic doping effect of single-UC FeS from the substrate. In addition, at the Fermi level, the energy gaps of approximately 1.5?meV are observed in the films of both thicknesses at 4.6?K and below. The absence of coherence peaks of gap spectra may be related to the preformed Cooper-pairs without phase coherence.展开更多
We investigate the electronic-transport properties of two-dimensional monolayer films from Au-P-Au molecular junction to Au-Si-Au molecular junction using elastic scattering Green's function theory. In the process of...We investigate the electronic-transport properties of two-dimensional monolayer films from Au-P-Au molecular junction to Au-Si-Au molecular junction using elastic scattering Green's function theory. In the process of replacing the P atoms with Si atoms every other line from the middle of monolayer blue phosphorus molecular structure, the substitution of Si atoms changes the properties of Au-P-Au molecular junction significantly. Interestingly, the current value has a symmetric change as a parabolic curve with the peak appearing in Au-Si_1P_1-Au molecular junction, which provides the most stable current of 15.00 nA in a wide voltage range of 0.70-2.70 V.Moreover, the current-voltage characteristics of the structures indicate that the steps tend to disappear revealing the property similar to metal when the Si atoms dominate the molecular junction.展开更多
Heteroepitaxial GaN films are grown on sapphire (0001) substrates using laser molecular beam epitaxy. The growth processes are in-situ monitored by reflection high energy electron diffraction. It is revealed that th...Heteroepitaxial GaN films are grown on sapphire (0001) substrates using laser molecular beam epitaxy. The growth processes are in-situ monitored by reflection high energy electron diffraction. It is revealed that the growth mode of GaN transformed from three-dimensional (3D) island mode to two-dimensional (2D) layer-by-layer mode with the increase of thickness. This paper investigates the interfacial strain relaxation of GaN films by analysing their diffraction patterns. Calculation shows that the strain is completely relaxed when the thickness reaches 15 nm. The surface morphology evolution indicates that island merging and reduction of the island-edge barrier provide an effective way to make GaN films follow a 2D layer-by-layer growth mode. The ll0-nm GaN films with a 2D growth mode have smooth regular hexagonal shapes. The X-ray diffraction indicates that thickness has a significant effect on the crystallized quality of GaN thin films.展开更多
The molecular dynamics simulation of ultra-thin films under confined shear was performed to investigate the relation between dynamic properties of ultra-thin films and their microstructure. The solid walls were modell...The molecular dynamics simulation of ultra-thin films under confined shear was performed to investigate the relation between dynamic properties of ultra-thin films and their microstructure. The solid walls were modelled using an Au crystal and the fluid molecules were modeled using decane. The simulation results indicate that the microstructure of ultra-thin films is a kind of solid-like layering structure. The density and velocity profiles of the fluid molecules are symmetric. The slip and shear thinning behavior was founded and interpreted.A mathematic model was set up according to the results of the simulation and experiments.展开更多
Classical molecular dynamics is used to investigate the equilibrium state of the surface region and interface of heteroepitaxial La2O3 thin films.Due to the lattice mismatch,heteroepitaxial thin films are subject to v...Classical molecular dynamics is used to investigate the equilibrium state of the surface region and interface of heteroepitaxial La2O3 thin films.Due to the lattice mismatch,heteroepitaxial thin films are subject to very large stress.For this reason the behavior of La2O3 thin films at SiO2interface becomes an important concern.Our result indicates that La2O3 can uniformly wet SiO2 surface.The properties of the simulated films are analyzed and the lack of any discernible crystalline phase in epitaxial La2O3 on SiO2 indicates that the lattice mismatch between SiO2 and La2O3 is sufficiently large to prevent the formation of even short-range orders in La2O3 film.展开更多
Molecular dynamics simulation is applied to study the instability and rupture process of ultra-thin water films on a solid substrate. Results show the small disturbance of the film will develop linearly due to the spi...Molecular dynamics simulation is applied to study the instability and rupture process of ultra-thin water films on a solid substrate. Results show the small disturbance of the film will develop linearly due to the spinodal instability, whereas the interaction between solid and liquid has less influences on the initial growth. Then the rupture occurs and the rim recedes with a dynamic contact angle. The radius of the rim. varies with time as the square root of t, which is consistent with the macroscopic theory available. Stronger interaction between solid and liquid will postpone rupture time decline the dynamic contact angle and raise the density of water near the interface between solid and liquid.展开更多
The three stages in the hot-drawing process of ultrahigh-molecular-weight polyethylene gel films can be detected by x-ray diffraction, infrared spectroscopy, birefringence and scanning electron microscopy. In the firs...The three stages in the hot-drawing process of ultrahigh-molecular-weight polyethylene gel films can be detected by x-ray diffraction, infrared spectroscopy, birefringence and scanning electron microscopy. In the first stage of the drawing process, the lamellae in the gel films rotate and/or slip with the b-axis preferentially perpendicular to the drawing direction. With increased drawing, the c-axis of the lamellae become parallel to the stretching direction while unfolding of the chain begins, and the chains of the amorphous phase also orient along the drawing direction in the strain-chain domain. When the draw ratio is large enough, the lamellar structure is transformed into a fibrillar structure in a two-dimensional fashion.展开更多
Our recent progress in the fabrication of FeSe and KxFe2_ySe2 ultra thin films and the understanding of their superconductivity properties is reviewed. The growth of high-quality FeSe and KxFe2_ySe2 films is achieved ...Our recent progress in the fabrication of FeSe and KxFe2_ySe2 ultra thin films and the understanding of their superconductivity properties is reviewed. The growth of high-quality FeSe and KxFe2_ySe2 films is achieved in a well controlled manner by molecular beam epitaxy. The high-quality stoichiometric and superconducting crystalline thin films allow us to investigate the intrinsic superconductivity properties and the interplay between the superconductivity and the film thickness, the local structure, the substrate, and magnetism. In situ low-temperature scanning tunneling spectra reveal the nodes and the twofold symmetry in FeSe, high-temperature superconductivity at the FeSe/SrTiO3 interface, phase separation and magnetic order in KxFe2_ySe2, and the suppression of superconductivity by twin boundaries and Fe vacancies. Our findings not only provide fundamental information for understanding the mechanism of unconventional superconductivity, but also demonstrate a powerful way of engineering superconductors and raising the transition temperature.展开更多
By means of oxide molecular beam epitaxy with shutter-growth mode, we fabricate a series of electron-doped (Sr1-xLax)2IrO4 (001) (x=0, 0.05, 0.1 and 0.15) single crystalline thin films and then investigate the d...By means of oxide molecular beam epitaxy with shutter-growth mode, we fabricate a series of electron-doped (Sr1-xLax)2IrO4 (001) (x=0, 0.05, 0.1 and 0.15) single crystalline thin films and then investigate the doping dependence of the electronic structure utilizing in-situ angle-resolved photoemission spectroscopy. It is found that with the increasing doping content, the Fermi levels of samples progressively shift upward. Prominently, an extra electron pocket crossing the Fermi level around the M point is evidently observed in the 15% nominal doping sample. Moreover, bulk-sensitive transport measurements confirm that the doping effectively suppresses the insulating state with respect to the as-grown Sr2IrO4, though the doped samples still remain insulating at low temperatures due to the localization effect possibly stemming from disorders including oxygen deficiencies. Our work provides another feasible doping method to tune electronic structure of Sr2 IrO4.展开更多
A zinc oxide thin film in cubic crystalline phase, which is usually prepared under high pressure, has been grown on the Mg O(001) substrate by a three-step growth using plasma-assisted molecular beam epitaxy. The cu...A zinc oxide thin film in cubic crystalline phase, which is usually prepared under high pressure, has been grown on the Mg O(001) substrate by a three-step growth using plasma-assisted molecular beam epitaxy. The cubic structure is confirmed by in-situ reflection high energy electron diffraction measurements and simulations. The x-ray photoelectron spectroscopy reveals that the outer-layer surface of the film(less than 5 nm thick) is of ZnO phase while the buffer layer above the substrate is of ZnMgO phase, which is further confirmed by the band edge transmissions at the wavelengths of about 390 nm and 280 nm, respectively. The x-ray diffraction exhibits no peaks related to wurtzite ZnO phase in the film. The cubic ZnO film is presumably considered to be of the rock-salt phase. This work suggests that the metastable cubic ZnO films, which are of applicational interest for p-type doping, can be epitaxially grown on the rock-salt substrates without the usually needed high pressure conditions.展开更多
文摘Molecular deposition filming flooding (MDFF) is a novel oil recovery technique based on the thermopositive monolayer electrostatic adsorption of the MDFF agent on different interfaces within reservoir systems. In this paper, the adsorption property of the MDFF agent, MD-1, on quartz sand has been studied through adsorption experiments at different pH and temperatures. Experimental data are also analyzed kinetically and thermodynamically. The results show that the adsorption of MD-1 on quartz sand takes place mainly because of electrostatic interactions, which corresponds to adsorption that increases with pH. Kinetic analyses show that at a higher pH the activation energy for adsorption gets lower and, therefore, the adsorption becomes quicker for MD-1 on quartz sand. Thermodynamic analyses show that pH plays an important role in the adsorption of MD-1 on quartz sand. At a higher pH, more negative surface charges result in the increase of electrostatic interactions between MD-1 and quartz sand. Therefore, the saturated adsorption amount increases and more adsorption heat will be released.
基金the National Natural Science Foundation of China(Grant No.50575171)the National Basic Research Program of China(Grant No.2007CB607604)the Open Financial Fund of the State Key Laboratory of Tribology of Tsinghua University(Grant No.SKLT05-02).
文摘An overview of the advances in studies on tribology of molecular deposition (MD) films is presented here to summarize the studies of nanofrictional properties, adhesion, wear and mechanical behavior, as well as the molecular dynamics simulation of nanotribological properties of the film in the last decade. Some key research topics which need to be investigate further are addressed.
基金Funded by the National Natural Science Foundation of China(No.50805007)the Fundamental Research Funds for the Central Universities, China (No.2013JBM074)
文摘Silicon-doped diamond-like carbon (Si-DLC) films possess the potential to improve wear performance of DLC films in humid atmospheres and at higher temperatures. But many experimental results of Si-DLC films show that their structure and mechanical properties have changed greatly with the increasing silicon content. Therefore, molecular dynamics (MD) simulations were used to generate hydrogen-free Si-DLC films and study their nano-indentation process under the interaction of a diamond indenter. The results show that sp3/sp2(C) (only carbon atoms) always decreases with the increasing silicon content. But sp3/sp2(C+Si) ratio increases firstly and reaches a maximum at the silicon content of 0.2, and then decreases with the further increase of the silicon content. Bulk modulus and hardness of the Si-DLC films both decrease with the increasing of the silicon content, which has the same trend with Papakonstantinou and Ikeyama's results. It is concluded that the hardness of the Si-DLC films is dependent on sp3/sp2(C), not sp3/sp2(C+Si).
基金Funded by the National Natural Science Foundation of China(No.51175085)the Tribology Science Fund of State Key Laboratory of Tribology(No.SKLTKF13A09)the Natural Science Foundation of Fujian Province(No.2016J01226)
文摘Molecular dynamics(MD) simulations using the polymer consistent force field(PCFF) were adopted to investigate the pressure and thickness dependent density of squalane film in a nanogap at 373 K, with three different initial film thicknesses, and for a wide range of pressures. The equivalent densities predicted by MD simulations were compared with the empirical data. Results show that the squalane atoms tend to form layers parallel to the confining substrates but the orientations of squalane molecules are irregular throughout the film. In addition, distinct excluded volumes are not found at the interfaces of the film and substrates. Furthermore, with the same initial film thickness h_0, the film thickness h and compressibility decrease with increasing pressure, but the compressibility is similar for films with different initial film thicknesses. The equivalent densities predicted by MD simulations with the maximum initial film thickness(9.44 nm) are accurate to the values of Tait equation. The MD simulation with adequate initial film thickness can accurately and conveniently predict the bulk densities of lubricants.
基金Supported by the National Natural Science Foundation of China(Nos.20774036 50930001+1 种基金 20933001)the Program for New Century Excellent Talents in University of China and Fok Ying Tung Education Foundation(No.114018)
文摘Coarse-grained molecular dynamics simulations were carried out to investigate the dewetting behavior of a polymer thin film on partial wetting solid surface at the early stage of the dewetting process. Spontaneous dewetting is initiated by removing a band of strip from both the ends of the liquid polymer film which has achieved equilibrium. The solid-liquid interaction and temperature were varied to show their influence on the dewetting dynamics during dewetting as well as the shape evolution of the liquid polymer film. As is consistent with the results obtained in previous researches, the liquid film recedes at a constant speed initially with different solid-liquid couplings and tempe- ratures. Furthermore, smaller coupling parameters or higher temperatures tend to accelerate the recession speed of the liquid film and shorten the constant-speed recession duration. Obvious rims were not always observed. Both coupling parameter and temperature can influence the emergence of the rims.
文摘Two nanomechanical properties of the moleculor deposition ( MD ) film deposited on the Au substrate were studied. The first is its nanotribological property investigated by an atomic force microscope, which indicates that the deposition of the MD film could reduce the frictional force. The second is its nanoindent property studied by a nano-indenter. The results show that, after the MD film is deposited on the Au substrate , the elastic modulus, hardness and load decreased all, moreover, the elastic deformation increased and the plastic deformation decreased, which indicates that the MD film can improve the nanomechanical properties of the Au substrate.
基金Supported by National Natural Science Foundation of China(Grant Nos.51335005,51321092)
文摘In order to understand lubrication mechanism at the nanoscale, researchers have used many physical experimental approaches, such as surface force apparatus, atomic force microscopy and ball-on-disk tribometer. The results show that the variation rules of the friction force, film thicknessand viscosity of the lubricant at the nanoscale are different from elastohydrodynamic lubrication (EHL). It is speculated that these differences are attributed to the special arrangement of the molecules at the nanoscale. However, it is difficult to obtain the molecular orientation and distribution directly from the lubricant molecules in these experiments. In recent years, more and more attention has been paid to use new techniques to overcome the shortcomings of traditional experiments, including various spectral methods. The most representative achievements in the experimental research of molecular arrangement are reviewed in this paper: The change of film structure of a liquid crystal under confinement has been obtained using X-ray method. The molecular orientation change of lubricant films has been observed using absorption spectroscopy. Infrared spectroscopy has been used to measure the anisotropy of molecular orientation in the contact region when the lubricant film thickness is reduced to a few tens of nanometers. In situ Raman spectroscopy has been performed to measure the molecular orientation of the lubricant film semi-quantitatively. These results prove that confinement and shear in the contact region can change the arrangement of lubricant molecules. As a result, the lubrication characteristics are affected. The shortages of these works are also discussed based on practicable results. Further work is needed to separate the information of the solid-liquid interface from the bulk liquid film.
基金Project (20006011) supported by the National Natural Science Foundation of China Project (20021017) by the Natural Science Foundation of Shanxi Province Project (2004-24) by the Scholarship Council Foundation of Shanxi Province
文摘The ion selectivity of nickel hexacyanoferrate thin film to alkali cations in ESIX (electrochemically switched ion exchange) processes was investigated using molecular dynamics(MD) techniques; water and cation (Na+ and Cs+) intercalation, configuration, and dynamics in reduced nickel hexacyanoferrate structures with different cation combinations were studied and compared with the experimental results. In the simulations, water was represented by an extended simple point-charge(SPC/E) model, and all other atomic interactions were represented by a universal force field(UFF). The potential energies of various cations combination (Cs+ and Na+) in reduced i-NiHCF and 1 mol/L Cs/NaCl mixed solution were obtained. In most cases, the total potential energy of the solid is reduced when water is intercalated into the various reduced NiHCF structures. Combining the solid and the solution simulation results, it is shown that the solid composition of 3Cs+/1Na+ is the stablest structure form (NaCs3Ni4[Fe(CN)6]3) over a range of solution compositions.
基金Supported by the Major State Basic Research Development Program( G2 0 0 0 0 7810 2 ) and the National Natural ScienceFoundation of China( No.2 0 0 0 3 0 0 4)
文摘The orientation and structural characterization of the ultrathin film of azobenzene-containing amphiphilic compound, C_ 12AzoNaph(1,4)C_6N +Br -, were studied in the present study. The compound can form a stable monolayer with sodium dextrin sulfate(SDS) by means of electrostatic interaction. Fourier-transform infrared(FT-IR) and near-infrared surface-enhanced Raman scattering(NIR-SERS) spectroscopies were used to study the orientation and characterize the structure of the Langmuir-Blodgett(LB) film and the dipping film. The FT-IR spectra indicate that the alkyl tail is nearly perpendicular to the substrate surface without any aggregation and adopts largely trans-zigzag conformation in the LB film. The NIR-SERS spectra demonstrate that the chromorphoric part in C_ 12AzoNaph(1,4)C_6N +Br is also nearly perpendicular to the surface of silver substrate both in the dipping film and the LB film. A new 'sandwiched system' model was designed to investigate the orientation and structural characterization of the chromophoric part in the multi-monolayer LB films on the non-SERS active substrate. The SERS mechanism of the 'sandwiched system' is discussed in the present paper.
基金This work is supported by the National Natural Science Foundation (Grant No. 10075009) Sino-France Advance Research Program (PRA)
文摘A Molecular Dynamics (MD) simulation with Tersoff empirical many-bodypotential has been employed to investigate the growth processes of diamond film with energeticspecies deposition. In the present study, we have studied the reaction probabilities of energeticspecies with energies of 0.1 e V to 10eV at the substrate temperature of 1100K. In the cases of thediamond growth on the surface with H passivation, the reaction probability of hydrocarbon speciesconsiderably increases when the species energy is higher than 2eV. This means that the diamond filmcan grow in the case of high incident species energy without the process of hydrogen abstraction,which is needed in the case of incident species with low energy. The reaction mechanism of energeticspecies on hydrogen passivated diamond surface is also discussed.
基金Supported by the National Natural Science Foundation of Chinathe Ministry of Science and Technology of Chinathe Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20130002120033
文摘We report the successful growth of the tetragonal FeS film with one or two unit-cell (UC) thickness on SrTiO33(001) substrates by molecular beam epitaxy. Large lattice constant mismatch with the substrate leads to high density of defects in single-UC FeS, while it has been significantly reduced in the double-UC thick film due to the lattice relaxation. The scanning tunneling spectra on the surface of the FeS thin film reveal the electronic doping effect of single-UC FeS from the substrate. In addition, at the Fermi level, the energy gaps of approximately 1.5?meV are observed in the films of both thicknesses at 4.6?K and below. The absence of coherence peaks of gap spectra may be related to the preformed Cooper-pairs without phase coherence.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374033,11774030,51735001 and 61775016the Fundamental Research Funds for the Central Universities under Grant No 2017CX10007
文摘We investigate the electronic-transport properties of two-dimensional monolayer films from Au-P-Au molecular junction to Au-Si-Au molecular junction using elastic scattering Green's function theory. In the process of replacing the P atoms with Si atoms every other line from the middle of monolayer blue phosphorus molecular structure, the substitution of Si atoms changes the properties of Au-P-Au molecular junction significantly. Interestingly, the current value has a symmetric change as a parabolic curve with the peak appearing in Au-Si_1P_1-Au molecular junction, which provides the most stable current of 15.00 nA in a wide voltage range of 0.70-2.70 V.Moreover, the current-voltage characteristics of the structures indicate that the steps tend to disappear revealing the property similar to metal when the Si atoms dominate the molecular junction.
基金supported by the Major State Basic Research Development Program of China (Grant No. 61363)the National Natural Science Foundation of China (Grant Nos. 50772019 and 61021061)
文摘Heteroepitaxial GaN films are grown on sapphire (0001) substrates using laser molecular beam epitaxy. The growth processes are in-situ monitored by reflection high energy electron diffraction. It is revealed that the growth mode of GaN transformed from three-dimensional (3D) island mode to two-dimensional (2D) layer-by-layer mode with the increase of thickness. This paper investigates the interfacial strain relaxation of GaN films by analysing their diffraction patterns. Calculation shows that the strain is completely relaxed when the thickness reaches 15 nm. The surface morphology evolution indicates that island merging and reduction of the island-edge barrier provide an effective way to make GaN films follow a 2D layer-by-layer growth mode. The ll0-nm GaN films with a 2D growth mode have smooth regular hexagonal shapes. The X-ray diffraction indicates that thickness has a significant effect on the crystallized quality of GaN thin films.
文摘The molecular dynamics simulation of ultra-thin films under confined shear was performed to investigate the relation between dynamic properties of ultra-thin films and their microstructure. The solid walls were modelled using an Au crystal and the fluid molecules were modeled using decane. The simulation results indicate that the microstructure of ultra-thin films is a kind of solid-like layering structure. The density and velocity profiles of the fluid molecules are symmetric. The slip and shear thinning behavior was founded and interpreted.A mathematic model was set up according to the results of the simulation and experiments.
基金supported by the MOST(No.2011CB935902,2010DFA72760 and 2013CB934000)
文摘Classical molecular dynamics is used to investigate the equilibrium state of the surface region and interface of heteroepitaxial La2O3 thin films.Due to the lattice mismatch,heteroepitaxial thin films are subject to very large stress.For this reason the behavior of La2O3 thin films at SiO2interface becomes an important concern.Our result indicates that La2O3 can uniformly wet SiO2 surface.The properties of the simulated films are analyzed and the lack of any discernible crystalline phase in epitaxial La2O3 on SiO2 indicates that the lattice mismatch between SiO2 and La2O3 is sufficiently large to prevent the formation of even short-range orders in La2O3 film.
基金the National Natural Science Foundation of China(Nos.10472062 and 10772107)Shanghai Leading Academic Discipline Project(No.Y0103)
文摘Molecular dynamics simulation is applied to study the instability and rupture process of ultra-thin water films on a solid substrate. Results show the small disturbance of the film will develop linearly due to the spinodal instability, whereas the interaction between solid and liquid has less influences on the initial growth. Then the rupture occurs and the rim recedes with a dynamic contact angle. The radius of the rim. varies with time as the square root of t, which is consistent with the macroscopic theory available. Stronger interaction between solid and liquid will postpone rupture time decline the dynamic contact angle and raise the density of water near the interface between solid and liquid.
文摘The three stages in the hot-drawing process of ultrahigh-molecular-weight polyethylene gel films can be detected by x-ray diffraction, infrared spectroscopy, birefringence and scanning electron microscopy. In the first stage of the drawing process, the lamellae in the gel films rotate and/or slip with the b-axis preferentially perpendicular to the drawing direction. With increased drawing, the c-axis of the lamellae become parallel to the stretching direction while unfolding of the chain begins, and the chains of the amorphous phase also orient along the drawing direction in the strain-chain domain. When the draw ratio is large enough, the lamellar structure is transformed into a fibrillar structure in a two-dimensional fashion.
基金supported by the National Natural Science Foundation of Chinathe National Basic Research Program of China
文摘Our recent progress in the fabrication of FeSe and KxFe2_ySe2 ultra thin films and the understanding of their superconductivity properties is reviewed. The growth of high-quality FeSe and KxFe2_ySe2 films is achieved in a well controlled manner by molecular beam epitaxy. The high-quality stoichiometric and superconducting crystalline thin films allow us to investigate the intrinsic superconductivity properties and the interplay between the superconductivity and the film thickness, the local structure, the substrate, and magnetism. In situ low-temperature scanning tunneling spectra reveal the nodes and the twofold symmetry in FeSe, high-temperature superconductivity at the FeSe/SrTiO3 interface, phase separation and magnetic order in KxFe2_ySe2, and the suppression of superconductivity by twin boundaries and Fe vacancies. Our findings not only provide fundamental information for understanding the mechanism of unconventional superconductivity, but also demonstrate a powerful way of engineering superconductors and raising the transition temperature.
基金Supported by the National Basic Research Program of China(973 Program)under Grant Nos 2011CBA00106 and2012CB927400the National Natural Science Foundation of China under Grant Nos 11274332 and 11227902Helmholtz Association through the Virtual Institute for Topological Insulators(VITI).M.Y.Li and D.W.Shen are also supported by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB04040300
文摘By means of oxide molecular beam epitaxy with shutter-growth mode, we fabricate a series of electron-doped (Sr1-xLax)2IrO4 (001) (x=0, 0.05, 0.1 and 0.15) single crystalline thin films and then investigate the doping dependence of the electronic structure utilizing in-situ angle-resolved photoemission spectroscopy. It is found that with the increasing doping content, the Fermi levels of samples progressively shift upward. Prominently, an extra electron pocket crossing the Fermi level around the M point is evidently observed in the 15% nominal doping sample. Moreover, bulk-sensitive transport measurements confirm that the doping effectively suppresses the insulating state with respect to the as-grown Sr2IrO4, though the doped samples still remain insulating at low temperatures due to the localization effect possibly stemming from disorders including oxygen deficiencies. Our work provides another feasible doping method to tune electronic structure of Sr2 IrO4.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11204253,U1232110,U1332105,61227009,and 91321102)the Fundamental Research Funds for Central Universities,China(Grant No.2013SH001)the National High Technology Research and Development Program of China(Grant No.2014AA052202)
文摘A zinc oxide thin film in cubic crystalline phase, which is usually prepared under high pressure, has been grown on the Mg O(001) substrate by a three-step growth using plasma-assisted molecular beam epitaxy. The cubic structure is confirmed by in-situ reflection high energy electron diffraction measurements and simulations. The x-ray photoelectron spectroscopy reveals that the outer-layer surface of the film(less than 5 nm thick) is of ZnO phase while the buffer layer above the substrate is of ZnMgO phase, which is further confirmed by the band edge transmissions at the wavelengths of about 390 nm and 280 nm, respectively. The x-ray diffraction exhibits no peaks related to wurtzite ZnO phase in the film. The cubic ZnO film is presumably considered to be of the rock-salt phase. This work suggests that the metastable cubic ZnO films, which are of applicational interest for p-type doping, can be epitaxially grown on the rock-salt substrates without the usually needed high pressure conditions.