Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In...Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In this regard,in order to assess the better adsorbent for separating CO_(2) from flue gas and CH_(4) from coal bed methane,adsorption isotherms of CO_(2),CH_(4) and N_(2) on activated carbon and carbon molecular sieve are measured at 303.15,318.15 and 333.15 K,and up to 250 kPa.The experimental data fit better with Langmuir 2 compared to Langmuir 3 and Langmuir-Freundlich models,and Clausius-Clapeyron equation was used to calculate the isosteric heat.Both the order of the adsorbed amount and the adsorption heat on the two adsorbents are CO_(2)>CH_(4)>N_(2).The adsorption kinetics are calculated by the pseudo-first kinetic model,and the order of adsorption rates on activated carbon is N_(2)-CH_(4)>CO_(2),while on carbon molecular sieve,it is CO_(2)-N_(2)>CH_(4).It is shown that relative molecular mass and adsorption heat are the primary effect on kinetics for activated carbon,while kinetic diameter is the main resistance factor for carbon molecular sieve.Moreover,the adsorption selectivity of CH_(4)/N_(2) and CO_(2)/N_(2) were estimated with the ideal adsorption solution theory,and carbon molecular sieve performed best at 318.15 K for both CO_(2) and CH_(4) separation.The study suggested that activated carbon is a better choice for separating flue gas and carbon molecular sieve can be a strong candidate for separating coal bed methane.展开更多
In order to comprehend the applicability of microwave irradiation for recovering coalbed methane,it is necessary to evaluate the microwave irradiation-induced alterations in coals with varying levels of metamorphism.I...In order to comprehend the applicability of microwave irradiation for recovering coalbed methane,it is necessary to evaluate the microwave irradiation-induced alterations in coals with varying levels of metamorphism.In this work,the carbon molecular sieve combined with KMnO_(4)oxidation was selected to fabricate carbon molecular sieve with diverse oxidation degrees,which can serve as model substances toward coals.Afterwards,the microwave irradiation dependences of pores,functional groups,and highpressure methane adsorption characteristics of model substances were studied.The results indicated that microwave irradiation causes rearrangement of oxygen-containing functional groups,which could block the micropores with a size of 0.40-0.60 nm in carbon molecular sieve;meanwhile,naphthalene and phenanthrene generated by macro-molecular structure pyrolysis due to microwave irradiation could block the micropores with a size of 0.70-0.90 nm.These alterations in micropore structure weaken the saturated methane adsorption capacity of oxidized carbon molecular sieve by 2.91%-23.28%,suggesting that microwave irradiation could promote methane desorption.Moreover,the increased mesopores found for oxidized carbon molecular sieve after microwave irradiation could benefit CH4 diffusion.In summary,the oxidized carbon molecular sieve can act as model substances toward coals with different ranks.Additionally,microwave irradiation is a promising technology to enhance coalbed methane recovery.展开更多
The activation effect of boric acid as an activator is good,and we investigate the best activation conditions for the boric acid impregnation method.To represent the structural characteristics and adsorption performan...The activation effect of boric acid as an activator is good,and we investigate the best activation conditions for the boric acid impregnation method.To represent the structural characteristics and adsorption performance of the Stellera Chamaejasme based carbon molecular sieves,we use Brunner-Emmet-Teller(BET)measurements,scan-ning electron microscope(SEM),Raman spectra(Raman),X-ray diffraction(XRD),and adsorption property measurement.When the loading ratio was 0.68:1,the specific surface area was 532.21 m^(2)/g,the total pore volume was 0.24 cm 3/g,the average pore size was 1.81 nm,the adsorption value of methylene blue was 145.28 mg/g,and the adsorption value of iodine was 713.33 mg/g,the results showed that boric acid had better activation effect.The carbon molecular sieves made from Stellera Chamaejasme and activated with boric acid produce two peaks on the aperture distribution graph that are densely distributed in the micropore range.This indicates that boric acid’s pore-forming tendency is primarily micropore.展开更多
A mathematical model for simulating concentric-bed and other components of molecular sieve oxygen concentrator is established. In the model, the binary Langmuir equilibrium adsorption equation is adopted to describe t...A mathematical model for simulating concentric-bed and other components of molecular sieve oxygen concentrator is established. In the model, the binary Langmuir equilibrium adsorption equation is adopted to describe the adsorption performance of the adsorbent, the linear driving force (LDF) model is used to describe the mass transfer rate, and the thermal effect during adsorption is considered. The finite difference method is used in simulation and comparison. Numerical results have a reasonable agreement with the experimental research.展开更多
Silicoaluminophosphate(SAPO) molecular sieves doped with cobalt(Co-SAPO-5) were synthesized hydrothermally with different concentrations of Co.Each sample was characterized by X-ray diffraction,N2 adsorption-desor...Silicoaluminophosphate(SAPO) molecular sieves doped with cobalt(Co-SAPO-5) were synthesized hydrothermally with different concentrations of Co.Each sample was characterized by X-ray diffraction,N2 adsorption-desorption,scanning electron microscopy,ultraviolet-visible spectroscopy,temperature-programmed desorption of NH3(NH3-TPD),and infrared spectrascopy of adsorbed pyridine(Py-IR).The results showed that Co was highly dispersed in the Co-SAPO-5 samples.In addition,a part of the Co content had been incorporated into the SAPO-5 framework,while the remainder existed on the surface as extra-framework Co.The surface areas of the Co-SAOP-5 samples were similar to the SAPO-5 sample.However,the pore volumes of the Co-SAOP-5 samples were lower than that of the SAOP-5 sample.As the concentration of Co increased,the pore volume gradually decreased because extra-framework cobalt oxide was present on the catalyst surface.NH3-TPD and Py-IR results revealed that the amount of Br(?)nsted acid and the total amount of acid for the Co-SAPO-5 samples were higher than that for the SAPO-5 sample.These values were also higher for samples with higher Co content.The catalytic activity of the Co-SAPO-5 samples was evaluated for the oxidation of cyclohexane with molecular oxygen.When Co was added to the SAPO-5 catalyst,the catalytic activity of the Co-SAPO-5 catalysts improved.In addition,the conversion of cyclohexane increased as the Co content in the Co-SAPO-5 catalysts increased.However,with a high conversion of cyclohexane(6.30%),the total selectivity of cyclohexanone(K) and cyclohexanol(A) decreased sharply.The K/A ratio ranged from 1.15 to 2.47.The effects of reaction conditions(i.e.,reaction temperature,reaction time,initial oxygen pressure,and the catalyst amount) on the performance of the Co-SAPO-5 catalysts have also been measured.Furthermore,the stability of the Co-SAPO-5 catalyst was explored and found to be good for the selective oxidation of cyclohexane by molecular oxygen.展开更多
Catalytic conversion of bio-oil into light olefins was performed by a series of molecular sieve catalysts, including HZSM-5, MCM-41, SAPO-34 and Y-zeolite. Based on the light olefins yield and its carbon selectivity, ...Catalytic conversion of bio-oil into light olefins was performed by a series of molecular sieve catalysts, including HZSM-5, MCM-41, SAPO-34 and Y-zeolite. Based on the light olefins yield and its carbon selectivity, the production of light olefins decreased in the following order: HZSM-5〉SAPO-34〉MCM-41〉Y-zeolite. The highest olefins yield from bio-oil using HZSM- 5 catalyst reached 0.22 kg/kgbio-oil with carbon selectivity of 50.7% and a nearly complete bio-oil conversion. The reaction conditions and catalyst characterization were investigated in detail to reveal the relationship between the catalyst structure and the production of olefins. The comparison between the pyrolysis and catalytic pyrolysis of bio-oil was also performed.展开更多
A simulated gasoline consisting of model sulfur compounds of thiophene (C4H4S) and 3-methythiophene (3-MC4H4S) dissolved in n-heptane was tested for the oxidative desulfurization in the hydrogen peroxide (H202) ...A simulated gasoline consisting of model sulfur compounds of thiophene (C4H4S) and 3-methythiophene (3-MC4H4S) dissolved in n-heptane was tested for the oxidative desulfurization in the hydrogen peroxide (H202) and formic acid oxidative system over metal oxide-loaded molecular sieve. The effects of the oxidative system, loaded metal oxides, phase transfer catalyst, the addition of olefin and aromatics on sulfur removal were investigated in details. The results showed that the sulfur removal rate of simulated gasoline in the H202/formic acid system was higher than in other oxidative systems. The cerium oxide-loaded molecular sieve was found very active catalyst for oxidation of simulated gasoline in this system. The sulfur removal rates of C4H4S and 3-MC4H4S were enhanced when phase transfer catalyst (PTC) was added. However, the sulfur removal rate of simulated gasoline was reduced with the addition of olefin and aromatics.展开更多
The 0.4 nm molecular sieve supported Cu-Ni bimetal catalysts for direct synthesis of dimethyl carbonate (DMC) from CO 2 and CH 3 OH were prepared and investigated. The synthesized catalysts were fully characterized by...The 0.4 nm molecular sieve supported Cu-Ni bimetal catalysts for direct synthesis of dimethyl carbonate (DMC) from CO 2 and CH 3 OH were prepared and investigated. The synthesized catalysts were fully characterized by BET, XRD (X-ray diffraction), TPR (temperature programmed reduction), IR (infra-red adsorption), NH 3-TPD (temperature programmed desorption) and CO 2-TPD (temperature programmed desorption) techniques. The results showed that the surface area of catalysts decreased with increasing metal content, and the metals as well as Cu-Ni alloy co-existed on the reduced catalyst surface. There existed interaction between metal and carrier, and moreover, metal particles affected obviously the acidity and basicity of carrier. The large amount of basic sites facilitated the activation of methanol to methoxyl species and their subsequent reaction with activated carbon dioxide. The catalysts were evaluated in a continuous tubular fixed-bed micro-gaseous reactor and the catalyst with bimetal loading of 20% (by mass) had best catalytic activities. Under the conditions of 393 K, 1.1 MPa, 5 h and gas space velocity of 510 h 1 , the selectivity and yield of DMC were higher than 86.0 % and 5.0 %, respectively.展开更多
Hydrogen is a green clean fuel and chemical feedstock. Its separation and purification from hydrogencontaining mixtures is the key step in the production of hydrogen with high purity(>99.99%). In this work, carbon ...Hydrogen is a green clean fuel and chemical feedstock. Its separation and purification from hydrogencontaining mixtures is the key step in the production of hydrogen with high purity(>99.99%). In this work, carbon molecular sieve(CMS) membranes with ultrahigh permselectivity for hydrogen purification were fabricated by high-temperature(700–900 ℃) pyrolysis of polymeric precursor of phenolphthaleinbased cardo poly(arylene ether ketone)(PEK-C). The evolution of the microstructural texture and ultramicroporous structure and gas separation performance of the CMS membrane were characterized via TG-MS, FT-IR, XRD, TEM, CO2 sorption analysis and gas permeation measurements. CMS membranes prepared at 700 ℃ exhibited amorphous turbostratic carbon structures and high H2 permeability of 5260 Barrer with H2/CH4, H2/N2 and H2/CO selectivities of 311, 142, 75, respectively. When carbonized at900 ℃, the CMS membrane with ultrahigh H2/CH4 selectivity of 1859 was derived owing to the formation of the dense and ordered carbon structure. CMS membranes with ultrahigh permselectivity exhibit an attractive application prospect in hydrogen purification.展开更多
Photochemical oxidation of thiophene in n-octane/water extraction system using O2 as oxidant was studied. The reaction mechanism ofthiophene oxidation was proposed. Results obtained here can be used as the reference f...Photochemical oxidation of thiophene in n-octane/water extraction system using O2 as oxidant was studied. The reaction mechanism ofthiophene oxidation was proposed. Results obtained here can be used as the reference for the oxidative desulfurization of gasoline because thiophene is one of the main components containing sulfur in fluid catalytic cracking gasoline. Thiophene dissolved in n-octane was photodecomposed and removed into the water phase at ambient temperature and atmospheric pressure. A 500 W high-pressure mercury lamp (main wave length 365 nm, 0.22 kW/m) was used as light source for irradiation, and air was introduced by a gas pump to supply O2. Thiophene can be photo-oxidized to sulfone, oxalic acid, SO4^2-, and CO2. The desulfurization yield of thiophene in n-octane is 58.9% under photo-irradiation for 5 h under the conditions of air flow at 150 mL/min and V(water):V(n-octane)=1:1. It can be improved to 92.3% by adding 0.15 g zeoliteartificial into 100 mL reaction system, which is the adsorbent for O2 and thiophene. And under such conditions, the photo-oxidation kinetics of thiophene with O2/zeoliteartificial is first-order with an apparent rate constant of 0.5047 h^-1 and a half-time of 1.37 h. The sulfur content can be depressed from 800 μL/L to less than 62 μL/L.展开更多
ZSM-5/MCM-41 composite molecular sieve was prepared by the nano-assembling method.The ZSM-5 molecular sieve,the MCM-41 molecular sieve,the ZSM-5/MCM-41 mechanical mixture and the ZSM-5/MCM-41 composite molecular sieve...ZSM-5/MCM-41 composite molecular sieve was prepared by the nano-assembling method.The ZSM-5 molecular sieve,the MCM-41 molecular sieve,the ZSM-5/MCM-41 mechanical mixture and the ZSM-5/MCM-41 composite molecular sieve were characterized by X-ray powder diffractometry,N_2 adsorption isotherms,temperature programmed desorption of ammonia and scanning electron microscopy and their properties were analyzed.Using FCC gasoline as the feed,activities of different molecular sieves for reducing olefin content were investigated in a continuous high-pressure micro-reactor unit under the following conditions:a reaction temperature of 400℃,a reaction time of 2 h,a weight hourly space velocity of 3h^(-1),and a reaction pressure of 2.0 MPa.The results showed that the HMCM-41 molecular sieve had low reaction performance,and the HZSM-5 molecular sieve demonstrated high aromatization activity,while the ZSM-5/MCM- 41 composite molecular sieve exhibited a best olefin-reducing performance because of its high isomerization activity and moderate aromatization activity.With a largest olefin-reducmg capability and a reasonable distribution of products,the composite molecular sieve was more suitable for FCC gasoline upgrading compared to other three catalysts.展开更多
A SAPO-11 silicoaluminophosphate molecular sieve with stable crystal structure was synthesized for the first time. After removing template by calcination, its crystal space group still retains Icm2 which the as-synthe...A SAPO-11 silicoaluminophosphate molecular sieve with stable crystal structure was synthesized for the first time. After removing template by calcination, its crystal space group still retains Icm2 which the as-synthesized has. The catalyst deriving from the present SAPO-11 materials shows higher isomerization selectivity and higher paraffin hydroisomerization yield than those reported elsewhere.展开更多
A series of Cr-containing MCM-41 molecular sieves crystallized at room temperature with a hexagonal and well-ordered structure were synthesized. XRD, FT-IR and DRS UV-Vis techniques were used to characterize the sampl...A series of Cr-containing MCM-41 molecular sieves crystallized at room temperature with a hexagonal and well-ordered structure were synthesized. XRD, FT-IR and DRS UV-Vis techniques were used to characterize the samples. The results indicate incorporation of Cr into the MCM-41 framework, and dispersion of some CrsO3 on the surface or/and in the bulk of the MCM-41. Test of catalytic properties of the series of samples for the topic reaction was carried out using a continuous-flow fixed-bed quartz reactor. Factors influencing the catalytic performance for this title reaction, such as Cr/Si ratio in MCM- 41 and reaction temperature were investigated. The experimental results indicate that over the 5%CrMCM-41 a 43.27% conversion of ethane and a 86.70% selectivity for ethylene were achieved in the ethane dehydrogenation with COs to ethylene at 973 K. It is suggested that both Cr^6+ and Cr^3+ are the catalytic activity center.展开更多
A series of Ag,Cu and Co-doped manganese oxide octahedral molecular sieves(OMS-2) were synthesized and evaluated to remove nitrogen oxides(NOx) from cigarette mainstream smoke.The three kinds of catalysts were added t...A series of Ag,Cu and Co-doped manganese oxide octahedral molecular sieves(OMS-2) were synthesized and evaluated to remove nitrogen oxides(NOx) from cigarette mainstream smoke.The three kinds of catalysts were added to cigarettes for studying the capabilities of reducing NOx from cigarette mainstream smoke.The catalysis and reduction of NO in laboratory were studied.A mechanism for NOx catalytic reduction from burning cigarettes with the catalysts adding to cigarettes was described.The catalysts show excellent catalytic activity for NOx removal,especially the Ag-doped OMS-2 catalyst.0.5%(mass fraction) Ag-doped OMS-2 catalyst has the best ability to remove NOx from cigarette mainstream smoke.The use of Ag-doped OMS-2 as catalyst for removing carcinogenic compounds from cigarette smoke will be an effective strategy to protect the environment and public health.展开更多
CoAPO11 molecular sieve with a high crystallinity was prepared by hydrothermal synthesis from a nonaqueous system(EG)in the presence of Et2NH or iPr2NH as a structuredirecting agent.The Xray diffraction(XRD)patterns a...CoAPO11 molecular sieve with a high crystallinity was prepared by hydrothermal synthesis from a nonaqueous system(EG)in the presence of Et2NH or iPr2NH as a structuredirecting agent.The Xray diffraction(XRD)patterns and scanning electron micrographs(SEM)revealed that the product powder was pure and homogenous in particlesize.The Xray powder diffraction data,compositional analysis,thermal stability analysis and UVVis diffuse reflectance spectroscopic analysis showed that Co()ions were incorporated in the aluminophosphate framework and tetrahedrally coordinated in the lattice of asprepared samples.展开更多
Thermally stable mesoporous silica and Ti-containing molecular sieves have been synthesized at mild temperature using low-cost and biodegradable --- amphoteric tetradecyl betaine as template. The physicochemical chara...Thermally stable mesoporous silica and Ti-containing molecular sieves have been synthesized at mild temperature using low-cost and biodegradable --- amphoteric tetradecyl betaine as template. The physicochemical characterizations proved that Ti(IV) could be incorporated in the mesoporous struture.展开更多
In view of the problems associated with large amount of discharged wastewater and serious pollution in the existing technology for removing sodium species from molecular sieves,this research work introduces the bipola...In view of the problems associated with large amount of discharged wastewater and serious pollution in the existing technology for removing sodium species from molecular sieves,this research work introduces the bipolar membrane electrodialysis into the process of removing sodium species from molecular sieves,and proposes a novel method of cleanly removing sodium from molecular sieves.The results show that the technology for removing sodium ions from the molecular sieves with an indirect electrodialysis process is feasible,and can recover Na OH solution.The bipolar membrane electrodialysis is especially suitable for treating the USY,ZSM-5 and Beta molecular sieves with high acid-resistance,and the physicochemical properties and catalytic performance of the prepared molecular sieves are roughly equivalent to those of the ammonium ion-exchange method.In comparison with the ammonium ion-exchange method,the process is clean and environmentally friendly,which consumes less water,and does not discharge wastewater to exhibit a rosy prospect of industrial application.展开更多
Research and development of efficient, economical and resource-based flue gas desulfurization technology has always been a hot spot in the field of air pollution control. Molecular sieve materials have been paid atten...Research and development of efficient, economical and resource-based flue gas desulfurization technology has always been a hot spot in the field of air pollution control. Molecular sieve materials have been paid attention to by SO<sub>2</sub> adsorbent researchers due to their huge specific surface area. In this paper, 13X zeolite was modified with Cu(NO<sub>3</sub>) <sub>2</sub>·3H<sub>2</sub>O to obtain 13x-Xwt %CuO (calculated by the amount of CuO loaded). The adsorption time and capacity of SO<sub>2</sub> penetration sorbent and the isothermal curve of N<sub>2</sub> adsorption-desorption were studied. The results are as follows: 13X-3wt%CuO has the best adsorption effect, the penetration adsorption time is 110 min, the penetration adsorption capacity is 43.41 mg·g<sup>-1</sup>, the saturation adsorption capacity is 49.27 mg·g<sup>-1</sup>;The amount of CuO loading has a great influence on the adsorption effect of modified 13X molecular sieve on SO<sub>2</sub>. SEM and BET characterization showed that CuO modification did not change the external morphology of 13X molecular sieve, changed the pore size, but did not block the original channel of the molecular sieve, before and after modification belong to the type I adsorption isothermal curve. The pore size distribution and type of molecular sieve, as well as the content and type of alkali metal cations jointly control the adsorption process of SO<sub>2</sub> by 13X-xwt %CuO. XPS characterization showed that Cu(NO<sub>3</sub>) <sub>2</sub> decomposed into CuO and Cu<sub>2</sub>O during roasting at 450°C, CuO/Cu<sub>2</sub>O ≈ 1.5. The R<sup>2</sup> values of the quasi-second-order kinetic models obtained from the 13X-Xwt %CuO particle diffusion kinetic models were all above 0.99, indicating that the quasi-second-order kinetic equations were more relevant. Particle diffusion dynamics model in fitting results show that the adsorption process can be divided into two stages, the first phase of surface adsorption and diffusion rate in the granules common control process, more accurate dynamics model of the secondary in the second phase particle diffusion rate control stage, mainly for the micropore adsorption or chemical adsorption, quasi level 2 dynamic model conformity of variation;C is a constant not equal to 0, indicating that the adsorption of SO<sub>2</sub> is not completely through the form of intra-particle diffusion, and a small amount of chemisorption exists. And it is the compound effect of multiple adsorption mechanisms.展开更多
A TAPO-11 molecular sieve with the space group lcm2 was synthesized successfully. The samples with different space group were controlled simply only by adjusting the crystallization temperature (CT) in the hydrother...A TAPO-11 molecular sieve with the space group lcm2 was synthesized successfully. The samples with different space group were controlled simply only by adjusting the crystallization temperature (CT) in the hydrothermal system. In the system of gel with a molar composition of 0.7R- xTiO2: P2O5: Al2O3: 30H2O, where x is 0.01-0.10 and the R is a mixture of di-n-propylamine and diisopropylamine as templates. When CT was between 150-160℃, the calcined sample showed the space group of Icm^2, while it showed Pna21 at CT larger than 190℃. The characterizations of UV-Vis and FT-IR confirmed that Ti was incorporated into the AEL framework successfully.展开更多
基金supported by the renewable energy and hydrogen projects in National Key Research and Development Plan of China(2019YFB1505000).
文摘Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In this regard,in order to assess the better adsorbent for separating CO_(2) from flue gas and CH_(4) from coal bed methane,adsorption isotherms of CO_(2),CH_(4) and N_(2) on activated carbon and carbon molecular sieve are measured at 303.15,318.15 and 333.15 K,and up to 250 kPa.The experimental data fit better with Langmuir 2 compared to Langmuir 3 and Langmuir-Freundlich models,and Clausius-Clapeyron equation was used to calculate the isosteric heat.Both the order of the adsorbed amount and the adsorption heat on the two adsorbents are CO_(2)>CH_(4)>N_(2).The adsorption kinetics are calculated by the pseudo-first kinetic model,and the order of adsorption rates on activated carbon is N_(2)-CH_(4)>CO_(2),while on carbon molecular sieve,it is CO_(2)-N_(2)>CH_(4).It is shown that relative molecular mass and adsorption heat are the primary effect on kinetics for activated carbon,while kinetic diameter is the main resistance factor for carbon molecular sieve.Moreover,the adsorption selectivity of CH_(4)/N_(2) and CO_(2)/N_(2) were estimated with the ideal adsorption solution theory,and carbon molecular sieve performed best at 318.15 K for both CO_(2) and CH_(4) separation.The study suggested that activated carbon is a better choice for separating flue gas and carbon molecular sieve can be a strong candidate for separating coal bed methane.
基金supported by the National Natural Science Foundation of China(42272202 and 52264001)the Yunnan Fundamental Research Projects(202201AT070144)+1 种基金the Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(YNWRQNBJ-2019-164)Training Programmes of Innovation and Entrepreneurship for Undergraduates of Yunnan Province(S202210674128).
文摘In order to comprehend the applicability of microwave irradiation for recovering coalbed methane,it is necessary to evaluate the microwave irradiation-induced alterations in coals with varying levels of metamorphism.In this work,the carbon molecular sieve combined with KMnO_(4)oxidation was selected to fabricate carbon molecular sieve with diverse oxidation degrees,which can serve as model substances toward coals.Afterwards,the microwave irradiation dependences of pores,functional groups,and highpressure methane adsorption characteristics of model substances were studied.The results indicated that microwave irradiation causes rearrangement of oxygen-containing functional groups,which could block the micropores with a size of 0.40-0.60 nm in carbon molecular sieve;meanwhile,naphthalene and phenanthrene generated by macro-molecular structure pyrolysis due to microwave irradiation could block the micropores with a size of 0.70-0.90 nm.These alterations in micropore structure weaken the saturated methane adsorption capacity of oxidized carbon molecular sieve by 2.91%-23.28%,suggesting that microwave irradiation could promote methane desorption.Moreover,the increased mesopores found for oxidized carbon molecular sieve after microwave irradiation could benefit CH4 diffusion.In summary,the oxidized carbon molecular sieve can act as model substances toward coals with different ranks.Additionally,microwave irradiation is a promising technology to enhance coalbed methane recovery.
基金Graduate Innovation Project of Qinghai University for Nationalities(2021XJXS12)Graduate Innovation Project of Qinghai University for Nationalities(12M2021018).
文摘The activation effect of boric acid as an activator is good,and we investigate the best activation conditions for the boric acid impregnation method.To represent the structural characteristics and adsorption performance of the Stellera Chamaejasme based carbon molecular sieves,we use Brunner-Emmet-Teller(BET)measurements,scan-ning electron microscope(SEM),Raman spectra(Raman),X-ray diffraction(XRD),and adsorption property measurement.When the loading ratio was 0.68:1,the specific surface area was 532.21 m^(2)/g,the total pore volume was 0.24 cm 3/g,the average pore size was 1.81 nm,the adsorption value of methylene blue was 145.28 mg/g,and the adsorption value of iodine was 713.33 mg/g,the results showed that boric acid had better activation effect.The carbon molecular sieves made from Stellera Chamaejasme and activated with boric acid produce two peaks on the aperture distribution graph that are densely distributed in the micropore range.This indicates that boric acid’s pore-forming tendency is primarily micropore.
文摘A mathematical model for simulating concentric-bed and other components of molecular sieve oxygen concentrator is established. In the model, the binary Langmuir equilibrium adsorption equation is adopted to describe the adsorption performance of the adsorbent, the linear driving force (LDF) model is used to describe the mass transfer rate, and the thermal effect during adsorption is considered. The finite difference method is used in simulation and comparison. Numerical results have a reasonable agreement with the experimental research.
基金supported by the National Basic Research Program of China(2010CB732300)the National Natural Science Foundation of China(21103048)~~
文摘Silicoaluminophosphate(SAPO) molecular sieves doped with cobalt(Co-SAPO-5) were synthesized hydrothermally with different concentrations of Co.Each sample was characterized by X-ray diffraction,N2 adsorption-desorption,scanning electron microscopy,ultraviolet-visible spectroscopy,temperature-programmed desorption of NH3(NH3-TPD),and infrared spectrascopy of adsorbed pyridine(Py-IR).The results showed that Co was highly dispersed in the Co-SAPO-5 samples.In addition,a part of the Co content had been incorporated into the SAPO-5 framework,while the remainder existed on the surface as extra-framework Co.The surface areas of the Co-SAOP-5 samples were similar to the SAPO-5 sample.However,the pore volumes of the Co-SAOP-5 samples were lower than that of the SAOP-5 sample.As the concentration of Co increased,the pore volume gradually decreased because extra-framework cobalt oxide was present on the catalyst surface.NH3-TPD and Py-IR results revealed that the amount of Br(?)nsted acid and the total amount of acid for the Co-SAPO-5 samples were higher than that for the SAPO-5 sample.These values were also higher for samples with higher Co content.The catalytic activity of the Co-SAPO-5 samples was evaluated for the oxidation of cyclohexane with molecular oxygen.When Co was added to the SAPO-5 catalyst,the catalytic activity of the Co-SAPO-5 catalysts improved.In addition,the conversion of cyclohexane increased as the Co content in the Co-SAPO-5 catalysts increased.However,with a high conversion of cyclohexane(6.30%),the total selectivity of cyclohexanone(K) and cyclohexanol(A) decreased sharply.The K/A ratio ranged from 1.15 to 2.47.The effects of reaction conditions(i.e.,reaction temperature,reaction time,initial oxygen pressure,and the catalyst amount) on the performance of the Co-SAPO-5 catalysts have also been measured.Furthermore,the stability of the Co-SAPO-5 catalyst was explored and found to be good for the selective oxidation of cyclohexane by molecular oxygen.
基金V. ACKNOWLEDGEMENTS This work was supported by the National Natural Science Foundation of China (No.51161140331) and the National High Technology Research and Development of Ministry of Science and Technology of China (No.2009AA05Z435).
文摘Catalytic conversion of bio-oil into light olefins was performed by a series of molecular sieve catalysts, including HZSM-5, MCM-41, SAPO-34 and Y-zeolite. Based on the light olefins yield and its carbon selectivity, the production of light olefins decreased in the following order: HZSM-5〉SAPO-34〉MCM-41〉Y-zeolite. The highest olefins yield from bio-oil using HZSM- 5 catalyst reached 0.22 kg/kgbio-oil with carbon selectivity of 50.7% and a nearly complete bio-oil conversion. The reaction conditions and catalyst characterization were investigated in detail to reveal the relationship between the catalyst structure and the production of olefins. The comparison between the pyrolysis and catalytic pyrolysis of bio-oil was also performed.
基金Supported by the National Natural Science Foundation of China (No.20276015) and the Natural Science Foundation of Hebei Province (No.203364).
文摘A simulated gasoline consisting of model sulfur compounds of thiophene (C4H4S) and 3-methythiophene (3-MC4H4S) dissolved in n-heptane was tested for the oxidative desulfurization in the hydrogen peroxide (H202) and formic acid oxidative system over metal oxide-loaded molecular sieve. The effects of the oxidative system, loaded metal oxides, phase transfer catalyst, the addition of olefin and aromatics on sulfur removal were investigated in details. The results showed that the sulfur removal rate of simulated gasoline in the H202/formic acid system was higher than in other oxidative systems. The cerium oxide-loaded molecular sieve was found very active catalyst for oxidation of simulated gasoline in this system. The sulfur removal rates of C4H4S and 3-MC4H4S were enhanced when phase transfer catalyst (PTC) was added. However, the sulfur removal rate of simulated gasoline was reduced with the addition of olefin and aromatics.
基金Supported by the National High Technology Research and Development Program of China (2008AA03Z3472294,2009AA302410)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2010)+1 种基金the Guangdong Province Sci & Tech Bureau (2006B12401006, 2008A080800024)the Chinese Universities Basic Research Founding
文摘The 0.4 nm molecular sieve supported Cu-Ni bimetal catalysts for direct synthesis of dimethyl carbonate (DMC) from CO 2 and CH 3 OH were prepared and investigated. The synthesized catalysts were fully characterized by BET, XRD (X-ray diffraction), TPR (temperature programmed reduction), IR (infra-red adsorption), NH 3-TPD (temperature programmed desorption) and CO 2-TPD (temperature programmed desorption) techniques. The results showed that the surface area of catalysts decreased with increasing metal content, and the metals as well as Cu-Ni alloy co-existed on the reduced catalyst surface. There existed interaction between metal and carrier, and moreover, metal particles affected obviously the acidity and basicity of carrier. The large amount of basic sites facilitated the activation of methanol to methoxyl species and their subsequent reaction with activated carbon dioxide. The catalysts were evaluated in a continuous tubular fixed-bed micro-gaseous reactor and the catalyst with bimetal loading of 20% (by mass) had best catalytic activities. Under the conditions of 393 K, 1.1 MPa, 5 h and gas space velocity of 510 h 1 , the selectivity and yield of DMC were higher than 86.0 % and 5.0 %, respectively.
基金the National Key R&D Program of China(2017YFB0603403)National Natural Science Foundation of China(21676044,21878033,21978034)+1 种基金High Level Innovation Team of Liaoning Province(XLYC1908033)Fundamental Research Funds for the Central Universities(DUT19ZD211,DUT 2018TB02)for the financial support。
文摘Hydrogen is a green clean fuel and chemical feedstock. Its separation and purification from hydrogencontaining mixtures is the key step in the production of hydrogen with high purity(>99.99%). In this work, carbon molecular sieve(CMS) membranes with ultrahigh permselectivity for hydrogen purification were fabricated by high-temperature(700–900 ℃) pyrolysis of polymeric precursor of phenolphthaleinbased cardo poly(arylene ether ketone)(PEK-C). The evolution of the microstructural texture and ultramicroporous structure and gas separation performance of the CMS membrane were characterized via TG-MS, FT-IR, XRD, TEM, CO2 sorption analysis and gas permeation measurements. CMS membranes prepared at 700 ℃ exhibited amorphous turbostratic carbon structures and high H2 permeability of 5260 Barrer with H2/CH4, H2/N2 and H2/CO selectivities of 311, 142, 75, respectively. When carbonized at900 ℃, the CMS membrane with ultrahigh H2/CH4 selectivity of 1859 was derived owing to the formation of the dense and ordered carbon structure. CMS membranes with ultrahigh permselectivity exhibit an attractive application prospect in hydrogen purification.
基金Science and Technology Development Planning Foundation of Jilin Province, China(No.20030405)
文摘Photochemical oxidation of thiophene in n-octane/water extraction system using O2 as oxidant was studied. The reaction mechanism ofthiophene oxidation was proposed. Results obtained here can be used as the reference for the oxidative desulfurization of gasoline because thiophene is one of the main components containing sulfur in fluid catalytic cracking gasoline. Thiophene dissolved in n-octane was photodecomposed and removed into the water phase at ambient temperature and atmospheric pressure. A 500 W high-pressure mercury lamp (main wave length 365 nm, 0.22 kW/m) was used as light source for irradiation, and air was introduced by a gas pump to supply O2. Thiophene can be photo-oxidized to sulfone, oxalic acid, SO4^2-, and CO2. The desulfurization yield of thiophene in n-octane is 58.9% under photo-irradiation for 5 h under the conditions of air flow at 150 mL/min and V(water):V(n-octane)=1:1. It can be improved to 92.3% by adding 0.15 g zeoliteartificial into 100 mL reaction system, which is the adsorbent for O2 and thiophene. And under such conditions, the photo-oxidation kinetics of thiophene with O2/zeoliteartificial is first-order with an apparent rate constant of 0.5047 h^-1 and a half-time of 1.37 h. The sulfur content can be depressed from 800 μL/L to less than 62 μL/L.
文摘ZSM-5/MCM-41 composite molecular sieve was prepared by the nano-assembling method.The ZSM-5 molecular sieve,the MCM-41 molecular sieve,the ZSM-5/MCM-41 mechanical mixture and the ZSM-5/MCM-41 composite molecular sieve were characterized by X-ray powder diffractometry,N_2 adsorption isotherms,temperature programmed desorption of ammonia and scanning electron microscopy and their properties were analyzed.Using FCC gasoline as the feed,activities of different molecular sieves for reducing olefin content were investigated in a continuous high-pressure micro-reactor unit under the following conditions:a reaction temperature of 400℃,a reaction time of 2 h,a weight hourly space velocity of 3h^(-1),and a reaction pressure of 2.0 MPa.The results showed that the HMCM-41 molecular sieve had low reaction performance,and the HZSM-5 molecular sieve demonstrated high aromatization activity,while the ZSM-5/MCM- 41 composite molecular sieve exhibited a best olefin-reducing performance because of its high isomerization activity and moderate aromatization activity.With a largest olefin-reducmg capability and a reasonable distribution of products,the composite molecular sieve was more suitable for FCC gasoline upgrading compared to other three catalysts.
文摘A SAPO-11 silicoaluminophosphate molecular sieve with stable crystal structure was synthesized for the first time. After removing template by calcination, its crystal space group still retains Icm2 which the as-synthesized has. The catalyst deriving from the present SAPO-11 materials shows higher isomerization selectivity and higher paraffin hydroisomerization yield than those reported elsewhere.
基金This work was financially supported by the Sci—ence and Technology Department of Jilin Province,China(20040703—2)and the sub·Program of the Sci—ence and Technology Cooperation Project between China and Spain.
文摘A series of Cr-containing MCM-41 molecular sieves crystallized at room temperature with a hexagonal and well-ordered structure were synthesized. XRD, FT-IR and DRS UV-Vis techniques were used to characterize the samples. The results indicate incorporation of Cr into the MCM-41 framework, and dispersion of some CrsO3 on the surface or/and in the bulk of the MCM-41. Test of catalytic properties of the series of samples for the topic reaction was carried out using a continuous-flow fixed-bed quartz reactor. Factors influencing the catalytic performance for this title reaction, such as Cr/Si ratio in MCM- 41 and reaction temperature were investigated. The experimental results indicate that over the 5%CrMCM-41 a 43.27% conversion of ethane and a 86.70% selectivity for ethylene were achieved in the ethane dehydrogenation with COs to ethylene at 973 K. It is suggested that both Cr^6+ and Cr^3+ are the catalytic activity center.
文摘A series of Ag,Cu and Co-doped manganese oxide octahedral molecular sieves(OMS-2) were synthesized and evaluated to remove nitrogen oxides(NOx) from cigarette mainstream smoke.The three kinds of catalysts were added to cigarettes for studying the capabilities of reducing NOx from cigarette mainstream smoke.The catalysis and reduction of NO in laboratory were studied.A mechanism for NOx catalytic reduction from burning cigarettes with the catalysts adding to cigarettes was described.The catalysts show excellent catalytic activity for NOx removal,especially the Ag-doped OMS-2 catalyst.0.5%(mass fraction) Ag-doped OMS-2 catalyst has the best ability to remove NOx from cigarette mainstream smoke.The use of Ag-doped OMS-2 as catalyst for removing carcinogenic compounds from cigarette smoke will be an effective strategy to protect the environment and public health.
文摘CoAPO11 molecular sieve with a high crystallinity was prepared by hydrothermal synthesis from a nonaqueous system(EG)in the presence of Et2NH or iPr2NH as a structuredirecting agent.The Xray diffraction(XRD)patterns and scanning electron micrographs(SEM)revealed that the product powder was pure and homogenous in particlesize.The Xray powder diffraction data,compositional analysis,thermal stability analysis and UVVis diffuse reflectance spectroscopic analysis showed that Co()ions were incorporated in the aluminophosphate framework and tetrahedrally coordinated in the lattice of asprepared samples.
文摘Thermally stable mesoporous silica and Ti-containing molecular sieves have been synthesized at mild temperature using low-cost and biodegradable --- amphoteric tetradecyl betaine as template. The physicochemical characterizations proved that Ti(IV) could be incorporated in the mesoporous struture.
基金financially supported by the National Basic Research Program of China(973 Program)under the Grant No.2015AA03A061
文摘In view of the problems associated with large amount of discharged wastewater and serious pollution in the existing technology for removing sodium species from molecular sieves,this research work introduces the bipolar membrane electrodialysis into the process of removing sodium species from molecular sieves,and proposes a novel method of cleanly removing sodium from molecular sieves.The results show that the technology for removing sodium ions from the molecular sieves with an indirect electrodialysis process is feasible,and can recover Na OH solution.The bipolar membrane electrodialysis is especially suitable for treating the USY,ZSM-5 and Beta molecular sieves with high acid-resistance,and the physicochemical properties and catalytic performance of the prepared molecular sieves are roughly equivalent to those of the ammonium ion-exchange method.In comparison with the ammonium ion-exchange method,the process is clean and environmentally friendly,which consumes less water,and does not discharge wastewater to exhibit a rosy prospect of industrial application.
文摘Research and development of efficient, economical and resource-based flue gas desulfurization technology has always been a hot spot in the field of air pollution control. Molecular sieve materials have been paid attention to by SO<sub>2</sub> adsorbent researchers due to their huge specific surface area. In this paper, 13X zeolite was modified with Cu(NO<sub>3</sub>) <sub>2</sub>·3H<sub>2</sub>O to obtain 13x-Xwt %CuO (calculated by the amount of CuO loaded). The adsorption time and capacity of SO<sub>2</sub> penetration sorbent and the isothermal curve of N<sub>2</sub> adsorption-desorption were studied. The results are as follows: 13X-3wt%CuO has the best adsorption effect, the penetration adsorption time is 110 min, the penetration adsorption capacity is 43.41 mg·g<sup>-1</sup>, the saturation adsorption capacity is 49.27 mg·g<sup>-1</sup>;The amount of CuO loading has a great influence on the adsorption effect of modified 13X molecular sieve on SO<sub>2</sub>. SEM and BET characterization showed that CuO modification did not change the external morphology of 13X molecular sieve, changed the pore size, but did not block the original channel of the molecular sieve, before and after modification belong to the type I adsorption isothermal curve. The pore size distribution and type of molecular sieve, as well as the content and type of alkali metal cations jointly control the adsorption process of SO<sub>2</sub> by 13X-xwt %CuO. XPS characterization showed that Cu(NO<sub>3</sub>) <sub>2</sub> decomposed into CuO and Cu<sub>2</sub>O during roasting at 450°C, CuO/Cu<sub>2</sub>O ≈ 1.5. The R<sup>2</sup> values of the quasi-second-order kinetic models obtained from the 13X-Xwt %CuO particle diffusion kinetic models were all above 0.99, indicating that the quasi-second-order kinetic equations were more relevant. Particle diffusion dynamics model in fitting results show that the adsorption process can be divided into two stages, the first phase of surface adsorption and diffusion rate in the granules common control process, more accurate dynamics model of the secondary in the second phase particle diffusion rate control stage, mainly for the micropore adsorption or chemical adsorption, quasi level 2 dynamic model conformity of variation;C is a constant not equal to 0, indicating that the adsorption of SO<sub>2</sub> is not completely through the form of intra-particle diffusion, and a small amount of chemisorption exists. And it is the compound effect of multiple adsorption mechanisms.
基金This work was supported by the National Natural Science Foundation of China (No. 20473027) Science and Technology Commission of Shanghai Municipality (No. 05dz22306)Pujiang project (No. 05PJ14041).
文摘A TAPO-11 molecular sieve with the space group lcm2 was synthesized successfully. The samples with different space group were controlled simply only by adjusting the crystallization temperature (CT) in the hydrothermal system. In the system of gel with a molar composition of 0.7R- xTiO2: P2O5: Al2O3: 30H2O, where x is 0.01-0.10 and the R is a mixture of di-n-propylamine and diisopropylamine as templates. When CT was between 150-160℃, the calcined sample showed the space group of Icm^2, while it showed Pna21 at CT larger than 190℃. The characterizations of UV-Vis and FT-IR confirmed that Ti was incorporated into the AEL framework successfully.