Detection of oil pollution in soil has been carried out using laser-induced breakdown spectroscopy(LIBS). A pulsed neodymium-doped yttrium aluminum garnet(Nd:YAG) laser(1,064 nm, 8 ns, 200 mJ) was focused onto ...Detection of oil pollution in soil has been carried out using laser-induced breakdown spectroscopy(LIBS). A pulsed neodymium-doped yttrium aluminum garnet(Nd:YAG) laser(1,064 nm, 8 ns, 200 mJ) was focused onto pelletized soil samples. Emission spectra were obtained from oil-contaminated soil and clean soil. The contaminated soil had almost the same spectrum profile as the clean soil and contained the same major and minor elements. However, a C–H molecular band was clearly detected in the oil-contaminated soil, while no C–H band was detected in the clean soil. Linear calibration curve of the C–H molecular band was successfully made by using a soil sample containing various concentrations of oil. The limit of detection of the C–H band in the soil sample was 0.001 mL/g. Furthermore, the emission spectrum of the contaminated soil clearly displayed titanium(Ti) lines, which were not detected in the clean soil. The existence of the C–H band and Ti lines in oil-contaminated soil can be used to clearly distinguish contaminated soil from clean soil. For comparison, the emission spectra of contaminated and clean soil were also obtained using scanning electron microscope-energy dispersive X-ray(SEM/EDX) spectroscopy,showing that the spectra obtained using LIBS are much better than using SEM/EDX, as indicated by the signal to noise ratio(S/N ratio).展开更多
基金financially supported by Diponegoro University,Semarang,Indonesia (31419/UN7.5.1/PG/2015 and 573-18/UN7.5.1/PG/2016)
文摘Detection of oil pollution in soil has been carried out using laser-induced breakdown spectroscopy(LIBS). A pulsed neodymium-doped yttrium aluminum garnet(Nd:YAG) laser(1,064 nm, 8 ns, 200 mJ) was focused onto pelletized soil samples. Emission spectra were obtained from oil-contaminated soil and clean soil. The contaminated soil had almost the same spectrum profile as the clean soil and contained the same major and minor elements. However, a C–H molecular band was clearly detected in the oil-contaminated soil, while no C–H band was detected in the clean soil. Linear calibration curve of the C–H molecular band was successfully made by using a soil sample containing various concentrations of oil. The limit of detection of the C–H band in the soil sample was 0.001 mL/g. Furthermore, the emission spectrum of the contaminated soil clearly displayed titanium(Ti) lines, which were not detected in the clean soil. The existence of the C–H band and Ti lines in oil-contaminated soil can be used to clearly distinguish contaminated soil from clean soil. For comparison, the emission spectra of contaminated and clean soil were also obtained using scanning electron microscope-energy dispersive X-ray(SEM/EDX) spectroscopy,showing that the spectra obtained using LIBS are much better than using SEM/EDX, as indicated by the signal to noise ratio(S/N ratio).