Phospholipids are a major kind of lipids in rice grains and have fundamental nutritional andfunctional benefits to the plant. Their lyso forms (lysophospholipids, LPLs) often form inclusion complexeswith amylose or ...Phospholipids are a major kind of lipids in rice grains and have fundamental nutritional andfunctional benefits to the plant. Their lyso forms (lysophospholipids, LPLs) often form inclusion complexeswith amylose or independently influence the physicochemical and functional properties of rice starch.However, the genetic basis for LPL synthesis in rice endosperm is largely unknown. Here, we performeda preliminary association test of 13 LPL compositions among 20 rice accessions, and identified 22putative main-effect quantitative trait loci responsible for all LPLs except for LPC14:0 and LPE14:0. Fivederived cleaved amplified polymorphic sequences and one insertion/deletion marker for threeLPL-synthesis-related candidate genes were developed. Association analysis revealed two markerssignificantly associated with starch LPL traits. These results provide an insight into the genetic basis ofphospholipid biosynthesis in rice and may contribute to the rice quality breeding programs usingfunctional markers.展开更多
基金financially supported by the Fundamental Research Funds for the Central Universities at Zhejiang University,Hangzhou,China(Grant No.2016XZZX001-09)
文摘Phospholipids are a major kind of lipids in rice grains and have fundamental nutritional andfunctional benefits to the plant. Their lyso forms (lysophospholipids, LPLs) often form inclusion complexeswith amylose or independently influence the physicochemical and functional properties of rice starch.However, the genetic basis for LPL synthesis in rice endosperm is largely unknown. Here, we performeda preliminary association test of 13 LPL compositions among 20 rice accessions, and identified 22putative main-effect quantitative trait loci responsible for all LPLs except for LPC14:0 and LPE14:0. Fivederived cleaved amplified polymorphic sequences and one insertion/deletion marker for threeLPL-synthesis-related candidate genes were developed. Association analysis revealed two markerssignificantly associated with starch LPL traits. These results provide an insight into the genetic basis ofphospholipid biosynthesis in rice and may contribute to the rice quality breeding programs usingfunctional markers.