Regenerative capacity is weak after central nervous system injury because of the absence of an enhancing microenvironment and presence of an inhibitory microenvironment for neuronal and axonal repair. In addition to t...Regenerative capacity is weak after central nervous system injury because of the absence of an enhancing microenvironment and presence of an inhibitory microenvironment for neuronal and axonal repair. In addition to the Nogo receptor(Ng R), the paired immunoglobulin-like receptor B(Pir B) is a recently discovered coreceptor of Nogo, myelin-associated glycoprotein, and myelin oligodendrocyte glycoprotein. Concurrent blocking of Ng R and Pir B almost completely eliminates the inhibitory effect of myelin-associated inhibitory molecules on axonal regeneration. Pir B participates in a key pathological process of the nervous system, specifically axonal regeneration inhibition. Pir B is an inhibitory receptor similar to Ng R, but their effects are not identical. This study summarizes the structure, distribution, relationship with common nervous system diseases, and known mechanisms of Pir B, and concludes that Pir B is also distributed in cells of the immune and hematopoietic systems. Further investigations are needed to determine if immunomodulation and blood cell migration involve inhibition of axonal regeneration.展开更多
Objective To investigate genes and involved biological processes closely associated with stem cell markers of colorectal cancer-epithelial cell adhesion molecule(EpCAM)+and CD44+.Methods By the bioinformatics method,w...Objective To investigate genes and involved biological processes closely associated with stem cell markers of colorectal cancer-epithelial cell adhesion molecule(EpCAM)+and CD44+.Methods By the bioinformatics method,with microarray data of colorectal cancer from gene expression omnibus(GEO)database and R2 platform,the genes significantly related with CD44 and Ep-展开更多
基金supported by the National Natural Science Foundation of China,No.81170577
文摘Regenerative capacity is weak after central nervous system injury because of the absence of an enhancing microenvironment and presence of an inhibitory microenvironment for neuronal and axonal repair. In addition to the Nogo receptor(Ng R), the paired immunoglobulin-like receptor B(Pir B) is a recently discovered coreceptor of Nogo, myelin-associated glycoprotein, and myelin oligodendrocyte glycoprotein. Concurrent blocking of Ng R and Pir B almost completely eliminates the inhibitory effect of myelin-associated inhibitory molecules on axonal regeneration. Pir B participates in a key pathological process of the nervous system, specifically axonal regeneration inhibition. Pir B is an inhibitory receptor similar to Ng R, but their effects are not identical. This study summarizes the structure, distribution, relationship with common nervous system diseases, and known mechanisms of Pir B, and concludes that Pir B is also distributed in cells of the immune and hematopoietic systems. Further investigations are needed to determine if immunomodulation and blood cell migration involve inhibition of axonal regeneration.
文摘Objective To investigate genes and involved biological processes closely associated with stem cell markers of colorectal cancer-epithelial cell adhesion molecule(EpCAM)+and CD44+.Methods By the bioinformatics method,with microarray data of colorectal cancer from gene expression omnibus(GEO)database and R2 platform,the genes significantly related with CD44 and Ep-