期刊文献+
共找到524,414篇文章
< 1 2 250 >
每页显示 20 50 100
Small molecule inhibitor DDQ-treated hippocampal neuronal cells show improved neurite outgrowth and synaptic branching
1
作者 Jangampalli Adi Pradeepkiran Priyanka Rawat +2 位作者 Arubala P.Reddy Erika Orlov PHemachandra Reddy 《Neural Regeneration Research》 SCIE CAS 2025年第9期2624-2632,共9页
The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are... The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are used to start networks.Here we explored the effects of diethyl(3,4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ)on neurite developmental features in HT22 neuronal cells.In this work,we examined the protective effects of DDQ on neuronal processes and synaptic outgrowth in differentiated HT22cells expressing mutant Tau(mTau)cDNA.To investigate DDQ chara cteristics,cell viability,biochemical,molecular,western blotting,and immunocytochemistry were used.Neurite outgrowth is evaluated through the segmentation and measurement of neural processes.These neural processes can be seen and measured with a fluorescence microscope by manually tracing and measuring the length of the neurite growth.These neuronal processes can be observed and quantified with a fluorescent microscope by manually tracing and measuring the length of the neuronal HT22.DDQ-treated mTau-HT22 cells(HT22 cells transfected with cDNA mutant Tau)were seen to display increased levels of synaptophysin,MAP-2,andβ-tubulin.Additionally,we confirmed and noted reduced levels of both total and p-Tau,as well as elevated levels of microtubule-associated protein 2,β-tubulin,synaptophysin,vesicular acetylcholine transporter,and the mitochondrial biogenesis protein-pe roxisome prolife rator-activated receptor-gamma coactivator-1α.In mTa u-expressed HT22 neurons,we observed DDQ enhanced the neurite characteristics and improved neurite development through increased synaptic outgrowth.Our findings conclude that mTa u-HT22(Alzheimer's disease)cells treated with DDQ have functional neurite developmental chara cteristics.The key finding is that,in mTa u-HT22 cells,DDQ preserves neuronal structure and may even enhance nerve development function with mTa u inhibition. 展开更多
关键词 diethyl(3 4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ) hippocampal neuronal cells HT22 neurite outgrowth neuronal development small molecule
下载PDF
Critical Solvation Structures Arrested Active Molecules for Reversible Zn Electrochemistry 被引量:1
2
作者 Junjie Zheng Bao Zhang +14 位作者 Xin Chen Wenyu Hao Jia Yao Jingying Li Yi Gan Xiaofang Wang Xingtai Liu Ziang Wu Youwei Liu Lin Lv Li Tao Pei Liang Xiao Ji Hao Wang Houzhao Wan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期64-78,共15页
Aqueous Zn-ion batteries(AZIBs)have attracted increasing attention in next-generation energy storage systems due to their high safety and economic.Unfortunately,the side reactions,dendrites and hydrogen evolution effe... Aqueous Zn-ion batteries(AZIBs)have attracted increasing attention in next-generation energy storage systems due to their high safety and economic.Unfortunately,the side reactions,dendrites and hydrogen evolution effects at the zinc anode interface in aqueous electrolytes seriously hinder the application of aqueous zinc-ion batteries.Here,we report a critical solvation strategy to achieve reversible zinc electrochemistry by introducing a small polar molecule acetonitrile to form a“catcher”to arrest active molecules(bound water molecules).The stable solvation structure of[Zn(H_(2)O)_(6)]^(2+)is capable of maintaining and completely inhibiting free water molecules.When[Zn(H_(2)O)_(6)]^(2+)is partially desolvated in the Helmholtz outer layer,the separated active molecules will be arrested by the“catcher”formed by the strong hydrogen bond N-H bond,ensuring the stable desolvation of Zn^(2+).The Zn||Zn symmetric battery can stably cycle for 2250 h at 1 mAh cm^(-2),Zn||V_(6)O_(13) full battery achieved a capacity retention rate of 99.2%after 10,000 cycles at 10 A g^(-1).This paper proposes a novel critical solvation strategy that paves the route for the construction of high-performance AZIBs. 展开更多
关键词 Zinc-ion battery Critical solvation Helmholtz layer Arrest active molecule Reversible zinc anode
下载PDF
Development of small molecule drugs targeting immune checkpoints 被引量:1
3
作者 Luoyi Chen Xinchen Zhao +3 位作者 Xiaowei Liu Yujie Ouyang Chuan Xu Ying Shi 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第5期382-399,共18页
Immune checkpoint inhibitors(ICIs)are used to relieve and refuel anti-tumor immunity by blocking the interaction,transcription,and translation of co-inhibitory immune checkpoints or degrading co-inhibitory immune chec... Immune checkpoint inhibitors(ICIs)are used to relieve and refuel anti-tumor immunity by blocking the interaction,transcription,and translation of co-inhibitory immune checkpoints or degrading co-inhibitory immune checkpoints.Thousands of small molecule drugs or biological materials,especially antibody-based ICIs,are actively being studied and antibodies are currently widely used.Limitations,such as anti-tumor efficacy,poor membrane permeability,and unneglected tolerance issues of antibody-based ICIs,remain evident but are thought to be overcome by small molecule drugs.Recent structural studies have broadened the scope of candidate immune checkpoint molecules,as well as innovative chemical inhibitors.By way of comparison,small molecule drug-based ICIs represent superior oral bioavailability and favorable pharmacokinetic features.Several ongoing clinical trials are exploring the synergetic effect of ICIs and other therapeutic strategies based on multiple ICI functions,including immune regulation,anti-angiogenesis,and cell cycle regulation.In this review we summarized the current progression of small molecule ICIs and the mechanism underlying immune checkpoint proteins,which will lay the foundation for further exploration. 展开更多
关键词 Immune checkpoints small molecule drugs programmed death protein 1 CD47 signal-regulatory proteinα
下载PDF
Molecular Mechanism and Molecular Design of Lubricating Oil Antioxidants 被引量:1
4
作者 Su Shuo Long Jun +2 位作者 Duan Qinghua Zhou Han Zhao Yi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期135-145,共11页
To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular me... To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions. 展开更多
关键词 lubricating oil ANTIOXIDANT molecular mechanism molecular design antioxidant performance
下载PDF
Molecular Design of Conjugated Small Molecule Nanoparticles for Synergistically Enhanced PTT/PDT 被引量:4
5
作者 Wei Shao Chuang Yang +5 位作者 Fangyuan Li Jiahe Wu Nan Wang Qiang Ding Jianqing Gao Daishun Ling 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第11期25-38,共14页
Simultaneous photothermal therapy(PTT)and photodynamic therapy(PDT)is beneficial for enhanced cancer therapy due to the synergistic effect.Conventional materials developed for synergistic PTT/PDT are generally multico... Simultaneous photothermal therapy(PTT)and photodynamic therapy(PDT)is beneficial for enhanced cancer therapy due to the synergistic effect.Conventional materials developed for synergistic PTT/PDT are generally multicomponent agents that need complicated preparation procedures and be activated by multiple laser sources.The emerging monocomponent diketopyrrolopyrrole(DPP)-based conjugated small molecular agents enable dual PTT/PDT under a single laser irradiation,but suffer from low singlet oxygen quantum yield,which severely restricts the therapeutic efficacy.Herein,we report acceptor-oriented molecular design of a donor-acceptor-donor(D-A-D)conjugated small molecule(IID-ThTPA)-based phototheranostic agent,with isoindigo(IID)as selective acceptor and triphenylamine(TPA)as donor.The strong D-A strength and narrow singlet-triplet energy gap endow IID-ThTPA nanoparticles(IID-ThTPA NPs)high mass extinction coefficient(18.2 L g^-1 cm^-1),competitive photothermal conversion efficiency(35.4%),and a dramatically enhanced singlet oxygen quantum yield(84.0%)comparing with previously reported monocomponent PTT/PDT agents.Such a high PTT/PDT performance of IID-ThTPA NPs achieved superior tumor cooperative eradicating capability in vitro and in vivo. 展开更多
关键词 molecular design Isoindigo Conjugated small molecule nanoparticles Singlet-triplet energy gap Synergistic PTT/PDT
下载PDF
H-and J-aggregation of conjugated small molecules in organic solar cells
6
作者 Qiaoqiao Zhao Feng He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期174-192,I0005,共20页
As H-and J-aggregation receive more and more attention in the research of organic solar cells(OSCs),especially in small molecular systems,deep understanding of aggregation behavior is needed to guide the design of con... As H-and J-aggregation receive more and more attention in the research of organic solar cells(OSCs),especially in small molecular systems,deep understanding of aggregation behavior is needed to guide the design of conjugated small molecular structure and the fabrication process of OSC device.For this end,this review is written.Here,the review firstly introduced the basic information about H-and J-aggregation of conjugated small molecules in OSCs.Then,the characteristics of H-and J-aggregation and the methods to identify them were summarized.Next,it reviewed the research progress of H-and J-aggregation of conjugated small molecules in OSCs,including the factors influencing H-and J-aggregation in thin film and the effects of H-and J-aggregation on OPV performance. 展开更多
关键词 H-AGGREGATION J-AGGREGATION Organic solar cells Small molecules EFFICIENCY STABILITY
下载PDF
Optimal and robust control of population transfer in asymmetric quantum-dot molecules
7
作者 郭裕 马松山 束传存 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期353-359,共7页
We present an optimal and robust quantum control method for efficient population transfer in asymmetric double quantum-dot molecules.We derive a long-duration control scheme that allows for highly efficient population... We present an optimal and robust quantum control method for efficient population transfer in asymmetric double quantum-dot molecules.We derive a long-duration control scheme that allows for highly efficient population transfer by accurately controlling the amplitude of a narrow-bandwidth pulse.To overcome fluctuations in control field parameters,we employ a frequency-domain quantum optimal control theory method to optimize the spectral phase of a single pulse with broad bandwidth while preserving the spectral amplitude.It is shown that this spectral-phase-only optimization approach can successfully identify robust and optimal control fields,leading to efficient population transfer to the target state while concurrently suppressing population transfer to undesired states.The method demonstrates resilience to fluctuations in control field parameters,making it a promising approach for reliable and efficient population transfer in practical applications. 展开更多
关键词 population transfer quantum optimal control theory quantum-dot molecules
下载PDF
Graphene effectively activating "dead" water molecules between manganese dioxide layers in potassium-ion battery
8
作者 Xinhai Wang Wensheng Yang +5 位作者 Shengshang Lu Shangshu Peng Tong Guo Quan Xie Qingquan Xiao Yunjun Ruan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期306-315,I0008,共11页
Aqueous potassium-ion batteries(APIBs),recognized as safe and reliable new energy devices,are considered as one of the alternatives to traditional batteries.Layered MnO_(2),serving as the main cathode,exhibits a lower... Aqueous potassium-ion batteries(APIBs),recognized as safe and reliable new energy devices,are considered as one of the alternatives to traditional batteries.Layered MnO_(2),serving as the main cathode,exhibits a lower specific capacity in aqueous electrolytes compared to organic systems and operates through a different reaction mechanism.The application of highly conductive graphene may effectively enhance the capacity of APIBs but could complicate the potassium storage environment.In this study,a MnO_(2) cathode pre-intercalated with K~+ions and grown on graphene(KMO@rGO) was developed using the microwave hydrothermal method for APIBs.KMO@rGO achieved a specific capacity of 90 mA h g^(-1) at a current density of 0.1 A g^(-1),maintaining a capacity retention rate of>90% after 5000 cycles at 5 A g^(-1).In-situ and exsitu characterization techniques revealed the energy-storage mechanism of KMO@rGO:layered MnO_(2)traps a large amount of "dead" water molecules during K~+ions removal.However,the introduction of graphene enables these water molecules to escape during K~+ ions insertion at the cathode.The galvanostatic intermittent titration technique and density functional theory confirmed that KMO@rGO has a higher K~+ions migration rate than MnO_(2).Therefore,the capacity of this cathode depends on the interaction between dead water and K~+ions during the energy-storage reaction.The optimal structural alignment between layered MnO_(2) and graphene allows electrons to easily flow into the external circuit.Rapid charge compensation forces numerous low-solvent K~+ions to displace interlayer dead water,enhancing the capacity.This unique reaction mechanism is unprecedented in other aqueous battery studies. 展开更多
关键词 GRAPHENE K-ion batteries Mn-based layered oxide Water molecules Density functional theory
下载PDF
Role of self-assembled molecules’anchoring groups for surface defect passivation and dipole modulation in inverted perovskite solar cells
9
作者 Xiaoyu Wang Muhammad Faizan +3 位作者 Kun Zhou Xinjiang Wang Yuhao Fu Lijun Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期108-115,共8页
Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited b... Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface,particularly at the buried interface between the perovskite and transparent conductive oxide(TCO).Recent efforts in the perovskite community have focused on designing novel self-assembled molecules(SAMs)to improve the quality of the buried interface.However,a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces.This understanding is crucial,particularly in terms of identifying chemically active anchoring groups.In this study,we used the star SAM([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface.Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages.These groups fulfill three key criteria:they provide the greatest potential for defect passivation,exhibit stable adsorption with defects,and exert significant regulatory effects on interface dipoles.Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties,which effectively neutralize local charges near defects.Among various defect types,iodine vacancies are the easiest to passivate,whereas iodine-substituted lead defects are the most challenging to passivate.Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs,contributing to the ongoing development of more efficient inverted perovskite solar cells. 展开更多
关键词 inverted perovskite solar cell defect passivation self-assembled molecule interface engineering first-principles calculation
下载PDF
Inverse Molecule Design with Invertible Neural Networks as Generative Models 被引量:1
10
作者 Wei Hu 《Journal of Biomedical Science and Engineering》 2021年第7期305-315,共11页
Using neural networks for supervised learning means learning a function that maps input <em>x</em> to output <em>y</em>. However, in many applications, the inverse learning is also wanted, <... Using neural networks for supervised learning means learning a function that maps input <em>x</em> to output <em>y</em>. However, in many applications, the inverse learning is also wanted, <em>i.e.</em>, inferring <em>y</em> from <em>x</em>, which requires invertibility of the learning. Since the dimension of input is usually much higher than that of the output, there is information loss in the forward learning from input to output. Thus, creating invertible neural networks is a difficult task. However, recent development of invertible learning techniques such as normalizing flows has made invertible neural networks a reality. In this work, we applied flow-based invertible neural networks as generative models to inverse molecule design. In this context, the forward learning is to predict chemical properties given a molecule, and the inverse learning is to infer the molecules given the chemical properties. Trained on 100 and 1000 molecules, respectively, from a benchmark dataset QM9, our model identified novel molecules that had chemical property values well exceeding the limits of the training molecules as well as the limits of the whole QM9 of 133,885 molecules, moreover our generative model could easily sample many molecules (<em>x</em> values) from any one chemical property value (<em>y</em> value). Compared with the previous method in the literature that could only optimize one molecule for one chemical property value at a time, our model could be trained once and then be sampled any multiple times and for any chemical property values without the need of retraining. This advantage comes from treating inverse molecule design as an inverse regression problem. In summary, our main contributions were two: 1) our model could generalize well from the training data and was very data efficient, 2) our model could learn bidirectional correspondence between molecules and their chemical properties, thereby offering the ability to sample any number of molecules from any <em>y</em> values. In conclusion, our findings revealed the efficiency and effectiveness of using invertible neural networks as generative models in inverse molecule design. 展开更多
关键词 Inverse molecule design Invertible Neural Networks Normalizing Flows
下载PDF
Large-scale interplant exchange of macromolecules between soybean and dodder under nutrient stresses
11
作者 Jingxiong Zhang Shalan Li +9 位作者 Wenxing Li Zerui Feng Shuhan Zhang Xijie Zheng Yuxing Xu Guojing Shen Man Zhao Guoyan Cao Xuna Wu Jianqiang Wu 《Plant Diversity》 SCIE CAS CSCD 2024年第1期116-125,共10页
Parasitic plants and their hosts communicate through haustorial connections.Nutrient deficiency is a common stress for plants,yet little is known about whether and how host plants and parasites communicate during adap... Parasitic plants and their hosts communicate through haustorial connections.Nutrient deficiency is a common stress for plants,yet little is known about whether and how host plants and parasites communicate during adaptation to such nutrient stresses.In this study,we used transcriptomics and proteomics to analyze how soybean(Glycine max)and its parasitizing dodder(Cuscuta australis)respond to nitrate and phosphate deficiency(-N and-P).After-N and-P treatment,the soybean and dodder plants exhibited substantial changes of transcriptome and proteome,although soybean plants showed very few transcriptional responses to-P and dodder did not show any transcriptional changes to either-N or-P.Importantly,large-scale interplant transport of mRNAs and proteins was detected.Although the mobile mRNAs only comprised at most 0.2%of the transcriptomes,the foreign mobile proteins could reach 6.8%of the total proteins,suggesting that proteins may be the major forms of interplant communications.Furthermore,the interplant mobility of macromolecules was specifically affected by the nutrient regimes and the transport of these macromolecules was very likely independently regulated.This study provides new insight into the communication between host plants and parasites under stress conditions. 展开更多
关键词 CUSCUTA Mobile molecules Nutrient deficiency Host plant-parasitic plant interaction Interplant transport Systemic signaling
下载PDF
Molecule aging induced by electron attacking
12
作者 Ping Song Yining Dong +5 位作者 Xue Gong Mingbo Ruan Baoxin Ni Xuanhao Mei Kun Jiang Weilin Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期519-525,I0013,共8页
Here we propose a new concept of"molecule aging":with some special treatment,a molecule could be"aged"by losing some unknown tiny particles or pieces from atoms in the molecule,Such"aging"... Here we propose a new concept of"molecule aging":with some special treatment,a molecule could be"aged"by losing some unknown tiny particles or pieces from atoms in the molecule,Such"aging"or loss of unknown tiny particles does not change apparently its molecular structure or chemical composition,but some physicochemical properties could be changed irreversibly.We further confirm such"molecule aging"via a long-term electron attacking to age water(H_(2)O)molecules.The IR spectra show no structural difference between the fresh water and the aged one,while the NMR spectra show that the electron attacking can decrease the size of water clusters.Such facts indicate that the electron attacking indeed can"affect"the structure of water molecule slightly but without damaging to its basic molecule frame.Further exploration reveals that the hydrogen evolution reaction(HER)activity of the aged water molecule is lower than the fresh water on the same Pt/C electrocatalyst.The density functional theory calculations indicate that the shortened O-H bond in H_(2)O indeed can present lower HER activity,so the observed size decrease of water clusters from NMR probably could be attributed to the shortening of O-H bond in water molecules.Such results indicate significantly that the molecule aging can produce materials with new functions for new possible applications. 展开更多
关键词 Aging of molecules Electron attacking Full width at half maxima Hydrogen evolution reaction
下载PDF
Design and regulation of the surface and interfacial behavior of protein molecules 被引量:2
13
作者 Qianqian Hou Nanxing Li +2 位作者 Yuanyuan Chao Shihao Li Lin Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第11期2837-2847,共11页
Surface and interfacial behavior of protein molecules are crucial for the protein function involved in many biochemical processes and biomedical products such as enzyme design,bio-separation,drug design and delivery.T... Surface and interfacial behavior of protein molecules are crucial for the protein function involved in many biochemical processes and biomedical products such as enzyme design,bio-separation,drug design and delivery.This article is devoted to an overview of design and regulation of the surface and interfacial behavior of protein molecules.The improvement of enzyme surface such as the directed evolution and the rational design of enzymes is introduced at first,followed by the rational design of protein interface for the protein assembly.Thereafter,the design of micro-environment and ligands are described as two examples for the design guided by protein surface.Then the design of protein surface and interface with the help of artificial intelligence will be discussed. 展开更多
关键词 PROTEIN ENZYME SURFACE INTERFACE design Artificial intelligence
下载PDF
Application of Empirical Electron Theory of Solids and Molecules to Composition Design of Multi-Component Medium-Low-Alloy Steels 被引量:1
14
作者 SHI Juyan XIE Guisheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第1期9-17,共9页
For austenitic octahedral segregation structure units, their pure mathematics statistic distribu!ive probability is calculated by the empirical electron theory (EET) of solids and molecules and K-B formula. The prac... For austenitic octahedral segregation structure units, their pure mathematics statistic distribu!ive probability is calculated by the empirical electron theory (EET) of solids and molecules and K-B formula. The practical distributive probability can be obtained only if the statistic distribution of austenitic octahedral segregation structure units and the interaction of the alloying elements in steel are considered. Based on 8 groups of experimental data of original steels, three empirical formulas revealing relationships between material macromechanics factor (Sm) and tensile strength (ab), or impact energy (AK), or hardness (HRC) of multi-component medium-low-alloy steels were established, respectively. Through the three empirical formulas, new supersaturated carburizing steel has been successfully designed and developed. The other 2 groups of the original experimental steels are used as the standard steel for testing the percentage error of the new steel. The results show that the calculated values are well consistent with those of measured ones and the new supersaturated carburized steel can meet the requirements of the die assembly of cold-drawn seamless stainless steel tube of Taiyuan Iron & Steel (Group) Company LTD. 展开更多
关键词 supersaturated carburizing steel composition design MICROSTRUCTURE empirical electrontheory mechanical property
下载PDF
Variation of microbiological and small molecule metabolite profiles of Nuodeng ham during ripening by high-throughput sequencing and GC-TOF-MS
15
作者 Cong Li Yingling Zou +5 位作者 Guozhou Liao Zijiang Yang Dahai Gu Yuehong Pu Changrong Ge Guiying Wang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2187-2196,共10页
The internal microbial diversity and small molecular metabolites of Nuodeng ham in different processing years(the first,second and third year sample)were analyzed by high-throughput sequencing technology and gas chrom... The internal microbial diversity and small molecular metabolites of Nuodeng ham in different processing years(the first,second and third year sample)were analyzed by high-throughput sequencing technology and gas chromatography-time of flight mass spectrography(GC-TOF-MS)to study the effects of microorganisms and small molecular metabolites on the quality of ham in different processing years.The results showed that the dominant bacteria phyla of Nuodeng ham in different processing years were Proteobacteria and Firmicutes,the dominant fungi phyla were Ascomycota and Basidiomycota,while Staphylococcus and Aspergillus were the dominant bacteria and fungi of Nuodeng ham,respectively.Totally,252 kinds of small molecular metabolites were identified from Nuodeng ham in different processing years,and 12 different metabolites were screened through multivariate statistical analysis.Further metabolic pathway analysis showed that 23 metabolic pathways were related to ham fermentation,of which 8 metabolic pathways had significant effects on ham fermentation(Impact>0.01,P<0.05).The content of L-proline,phenyllactic acid,L-lysine,carnosine,taurine,D-proline,betaine and creatine were significantly positively correlated with the relative abundance of Staphylococcus and Serratia,but negatively correlated with the relative abundance of Halomonas,Aspergillus and Yamadazyma. 展开更多
关键词 Nuodeng ham Microbial diversity Small molecule metabolites High-throughput sequencing Gas chromatography-time of flight mass spectrography
下载PDF
Modulating perovskite crystallization and band alignment using coplanar molecules for high-performance indoor photovoltaics
16
作者 Qu Yang Shuhan Fan +5 位作者 Haozhe Zhang Zhenhuang Su Xingyu Gao Hui Shen Mingkui Wang Xiu Gong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期383-390,共8页
The proper bandgap and exceptional photostability enable CsPbI_(3) as a potential candidate for indoor photovoltaics(IPVs),but indoor power conversion efficiency(PCE) is impeded by serious nonradiative recombination s... The proper bandgap and exceptional photostability enable CsPbI_(3) as a potential candidate for indoor photovoltaics(IPVs),but indoor power conversion efficiency(PCE) is impeded by serious nonradiative recombination stemming from challenges in incomplete DMAPbI_(3) conversion and lattice structure distortion.Here,the coplanar symmetric structu re of hexyl sulfide(HS) is employed to functionalize the CsPbI_(3) layer for fabricating highly efficient IPVs.The hydrogen bond between HS and DMAI promotes the conversion of DMAPbI_(3) to CsPbI_(3),while the copianar symmetric structure enhances crystalline order.Simultaneously,surface sulfidation during HS-induced growth results in the in situ formation of PbS,spontaneously creating a CsPbI_(3) N-P homojunction to enhance band alignment and carrier mobility.As a result,the CsPbI_(3)&HS devices achieve an impressive indoor PCE of 39.90%(P_(in):334.6 μW cm^(-2),P_(out):133.5 μW cm^(-2)) under LED@2968 K,1062 lux,and maintain over 90% initial PCE for 800 h at ^(3)0% air ambient humidity. 展开更多
关键词 Perovskite indoor photovoltaics CsPbI_(3) Coplanar symmetric structure molecules Crystallization kinetics Hydrogen bond N-P homojunction
下载PDF
Emerging molecules,tools,technology,and future of surgical knife in gastroenterology
17
作者 Ashok Kumar Anirudh Goyal 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第4期988-998,共11页
The 21^(st) century has started with several innovations in the medical sciences,with wide applications in health care management.This development has taken in the field of medicines(newer drugs/molecules),various too... The 21^(st) century has started with several innovations in the medical sciences,with wide applications in health care management.This development has taken in the field of medicines(newer drugs/molecules),various tools and technology which has completely changed the patient management including abdominal surgery.Surgery for abdominal diseases has moved from maximally invasive to minimally invasive(laparoscopic and robotic)surgery.Some of the newer medicines have its impact on need for surgical intervention.This article focuses on the development of these emerging molecules,tools,and technology and their impact on present surgical form and its future effects on the surgical intervention in gastroenterological diseases. 展开更多
关键词 Newer molecules Tools and technology Gastroenterology Future of surgical knife
下载PDF
Phase Engineering of MXene Derivatives Via Molecular Design for High-Rate Sodium-Ion Batteries
18
作者 Hui Zhang Xingwu Zhai +10 位作者 Xin Cao Zhihao Liu Xinfeng Tang Zhihong Hu Hang Wang Zhandong Wang Yang Xu Wei He Wei Zheng Min Zhou Zheng Ming Sun 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期122-130,共9页
Since 2019,research into MXene derivatives has seen a dramatic rise;further progress requires a rational design for specific functionality.Herein,through a molecular design by selecting suitable functional groups in t... Since 2019,research into MXene derivatives has seen a dramatic rise;further progress requires a rational design for specific functionality.Herein,through a molecular design by selecting suitable functional groups in the MXene coating,we have implemented the dual N doping of the derivatives,nitrogen-doped TiO_(2)@nitrogen-doped carbon nanosheets(N-TiO_(2)@NC),to strike a balance between the active anatase TiO_(2)at low temperatures,and carbon activation at high temperatures.The NH_(3)reduction environment generated at 400℃as evidenced by the in situ pyrolysis SVUV-PIMS process is crucial for concurrent phase engineering.With both electrical conductivity and surface Na+availability,the N-TiO_(2)@NC achieves higher interface capacitive-like sodium storage with long-term stability.More than 100 mAh g^(-1)is achieved at 2 A g^(-1)after 5000 cycles.The proposed design may be extended to other MXenes and solidify the growing family of MXene derivatives for energy storage. 展开更多
关键词 high-rate sodium-ion batteries molecular design MXene derivative phase engineering
下载PDF
Chlorine-Substituent Regulation in Dopant-Free Small-Molecule Hole-Transport Materials Improves the Effi ciency and Stability of Inverted Perovskite Solar Cells
19
作者 Xinyi Liu Xiaoye Zhang +7 位作者 Zhanfeng Li Jinbo Chen Yanting Tian Baoyou Liu Changfeng Si Gang Yue Hua Dong Zhaoxin Wu 《Transactions of Tianjin University》 EI CAS 2024年第4期314-323,共10页
Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,spec... Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,specifi cally fl uorenone-triphenylamine(FO-TPA)-x-Cl[x=para,meta,and ortho(p,m,and o)],with diff erent chlorine-substituent positions,as dopant-free HTMs for PSCs.These chlorinated molecules feature a symmetrical donor-acceptor-donor structure and ideal intramolecular charge transfer properties,allowing for self-doping and the establishment of built-in potentials for improving charge extraction.Highly effi cient hole-transfer interfaces are constructed between perovskites and these HTMs by strategi-cally modifying the chlorine substitution.Thus,the chlorinated HTM-derived inverted PSCs exhibited superior effi ciencies and air stabilities.Importantly,the dopant-free HTM FO-TPA-o-Cl not only attains a power conversion effi ciency of 20.82% but also demonstrates exceptional stability,retaining 93.8%of its initial effi ciency even after a 30-day aging test conducted under ambient air conditions in PSCs without encapsulation.These fi ndings underscore the critical role of chlorine-substituent regulation in HTMs in ensuring the formation and maintenance of effi cient and stable PSCs. 展开更多
关键词 Hole-transport materials Inverted perovskite solar cells Chlorinated small molecules Donor–acceptor–donor structure
下载PDF
Process design and intensification of multicomponent azeotropes special distillation separation via molecular simulation and system optimization
20
作者 Chunliang Liu Jianhui Zhong +5 位作者 Ranran Wei Jiuxu Ruan Kaicong Wang Zhaoyou Zhu Yinglong Wang Limei Zhong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期24-44,共21页
This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification ... This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes. 展开更多
关键词 Azeotrope separation Process design Optimization algorithm Process integration Dynamic control Entrainer selection
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部