Harmful algal blooms(HABs)that are formed by cyanobacteria have become a serious issue worldwide in recent years.Cyanobacteria can release a type of secondary metabolites called cyanotoxins into aquatic systems which ...Harmful algal blooms(HABs)that are formed by cyanobacteria have become a serious issue worldwide in recent years.Cyanobacteria can release a type of secondary metabolites called cyanotoxins into aquatic systems which may indirectly or directly provide health risks to the environment and humans.Cyanotoxins provide some of the most powerful natural poisons including potent neurotoxins,hepatotoxins,cytotoxins,and endotoxins that may result in environmental health risks,and long-term morbidity and mortality to animals and humans.In this research,we used the chemcomputational tool Molinspiration for molecular property predictions,Pred-hERG 4.2 web software for cardiac toxicity prediction,and Pred-Skin 2.0 web software for predicting skin sensitization.We are predicting some toxicological aspects of cyanobacteria here using chemcomputational tools with the hypothesis that cyanotoxins are providing a risk to human health.We are using the tool Pred-hERG 4.2 to predict hERG channel blocking potential and the Pred-skin tool to predict skin sensitization due to cyanotoxins.The potential of anatoxin,ambigol,the microcystin group,and lyngbyatoxin A,lyngbyatoxin B,nodularin-R,and saxitoxin were predicted to cause skin sensitization in the final results(consensus model).Anatoxin-a and lyngbyatoxin were predicted to allow GI absorption and blood–brain barrier penetration.Among the 20 predicted cyanotoxins only aeruginosin 103-A,ambigol A,and ambigol were predicted by Pred-hERG 4.2 according to the applicability domain results as potential cardiotoxins with weak or moderate potency.Lyngbyatoxin shows activity through the GPCR ligand and protease,kinase,and enzyme inhibitor.展开更多
An approach of using molinspiration calculations and molecular docking on PBPs (penicillin-binding proteins) and certain β-lactamases is employed to predict the molecular properties, bioactivity and resistance of n...An approach of using molinspiration calculations and molecular docking on PBPs (penicillin-binding proteins) and certain β-lactamases is employed to predict the molecular properties, bioactivity and resistance of newer and reference cephalosporins. The previously synthesized cephalosporins 1-8 and reference cephalosporins were subjected to extensive evaluations by calculating the molecular properties, drug-likeness scores on the bases of Lipinski's rule and bioactivity prediction using the method of molinspiration web-based software. The TPSA (topological polar surface area), OH-NH interactions, n-violation and the molinspiration Log partition coefficient (miLogP) values were also calculated. The investigated cephalosporins were subjected to molecular docking study on PBPs (lpyy) and on β-lactamases produced by S. aureus, K. pneumonia, E. coil and P. auroginosa using 1-click-docking website. Molecular properties of 1-8 recorded higher "FPSA than cephalexin and were lower than the reference cephalosporins and do not fulfill the requirements for Lipinski's rule. Bioactivities of 1-8 were predicted to be less and their docking scores on PBPs were comparable to those of the reference cephalosporins, particularly ceftobiprole. The references recorded various docking scores on the above β-lactamases and as expected, cefiobiprole recorded the lowest scores on all β-lactarnases. Cephalosporins 1-8 recorded various docking scores on β-lactamases. Molecular docking studies on PBPs and β-lactamases are considered as very useful, reliable and practical approach for predicting the bioactivity scores and to afford some information about the stability and selectivity of the newly proposed cephalosporins against β-lactamases of certain pathogenic microbes, such as P. auroginosa and MRSA, by recording the relative docking scores in comparison with those of reference cephalosporins.展开更多
基金funded by the Ministry of Science and Technology of Taiwan,R.O.C.to HUD,grant number MOST 107-2621-M-037-001,MOST108-2621-M-037-001,MOST 109-2621-M-037-001 provided for Tan,Han-Shihsupported by the Research Center for Environmental Medicine,Kaohsiung Medical University,Kaohsiung,Taiwan from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education(MOE)in TaiwanAn NSYSU/KMU collaboration is acknowledged(108-PO25).
文摘Harmful algal blooms(HABs)that are formed by cyanobacteria have become a serious issue worldwide in recent years.Cyanobacteria can release a type of secondary metabolites called cyanotoxins into aquatic systems which may indirectly or directly provide health risks to the environment and humans.Cyanotoxins provide some of the most powerful natural poisons including potent neurotoxins,hepatotoxins,cytotoxins,and endotoxins that may result in environmental health risks,and long-term morbidity and mortality to animals and humans.In this research,we used the chemcomputational tool Molinspiration for molecular property predictions,Pred-hERG 4.2 web software for cardiac toxicity prediction,and Pred-Skin 2.0 web software for predicting skin sensitization.We are predicting some toxicological aspects of cyanobacteria here using chemcomputational tools with the hypothesis that cyanotoxins are providing a risk to human health.We are using the tool Pred-hERG 4.2 to predict hERG channel blocking potential and the Pred-skin tool to predict skin sensitization due to cyanotoxins.The potential of anatoxin,ambigol,the microcystin group,and lyngbyatoxin A,lyngbyatoxin B,nodularin-R,and saxitoxin were predicted to cause skin sensitization in the final results(consensus model).Anatoxin-a and lyngbyatoxin were predicted to allow GI absorption and blood–brain barrier penetration.Among the 20 predicted cyanotoxins only aeruginosin 103-A,ambigol A,and ambigol were predicted by Pred-hERG 4.2 according to the applicability domain results as potential cardiotoxins with weak or moderate potency.Lyngbyatoxin shows activity through the GPCR ligand and protease,kinase,and enzyme inhibitor.
文摘An approach of using molinspiration calculations and molecular docking on PBPs (penicillin-binding proteins) and certain β-lactamases is employed to predict the molecular properties, bioactivity and resistance of newer and reference cephalosporins. The previously synthesized cephalosporins 1-8 and reference cephalosporins were subjected to extensive evaluations by calculating the molecular properties, drug-likeness scores on the bases of Lipinski's rule and bioactivity prediction using the method of molinspiration web-based software. The TPSA (topological polar surface area), OH-NH interactions, n-violation and the molinspiration Log partition coefficient (miLogP) values were also calculated. The investigated cephalosporins were subjected to molecular docking study on PBPs (lpyy) and on β-lactamases produced by S. aureus, K. pneumonia, E. coil and P. auroginosa using 1-click-docking website. Molecular properties of 1-8 recorded higher "FPSA than cephalexin and were lower than the reference cephalosporins and do not fulfill the requirements for Lipinski's rule. Bioactivities of 1-8 were predicted to be less and their docking scores on PBPs were comparable to those of the reference cephalosporins, particularly ceftobiprole. The references recorded various docking scores on the above β-lactamases and as expected, cefiobiprole recorded the lowest scores on all β-lactarnases. Cephalosporins 1-8 recorded various docking scores on β-lactamases. Molecular docking studies on PBPs and β-lactamases are considered as very useful, reliable and practical approach for predicting the bioactivity scores and to afford some information about the stability and selectivity of the newly proposed cephalosporins against β-lactamases of certain pathogenic microbes, such as P. auroginosa and MRSA, by recording the relative docking scores in comparison with those of reference cephalosporins.