The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ...The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.展开更多
Computer vision techniques, in conjunction with acquisition through remote cameras and unmanned aerial vehicles (UAVs), offer promising non-contact solutions to civil infrastructure condition assessment. The ultimate ...Computer vision techniques, in conjunction with acquisition through remote cameras and unmanned aerial vehicles (UAVs), offer promising non-contact solutions to civil infrastructure condition assessment. The ultimate goal of such a system is to automatically and robustly convert the image or video data into actionable information. This paper provides an overview of recent advances in computer vision techniques as they apply to the problem of civil infrastructure condition assessment. In particular, relevant research in the fields of computer vision, machine learning, and structural engineering is presented. The work reviewed is classified into two types: inspection applications and monitoring applications. The inspection applications reviewed include identifying context such as structural components, characterizing local and global visible damage, and detecting changes from a reference image. The monitoring applications discussed include static measurement of strain and displacement, as well as dynamic measurement of displacement for modal analysis. Subsequently, some of the key challenges that persist toward the goal of automated vision-based civil infrastructure and monitoring are presented. The paper concludes with ongoing work aimed at addressing some of these stated challenges.展开更多
Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods...Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods of pile internal forces include cantilever beam method and elastic foundation beam method.However,due to many assumptions involved in calculation,the analytical models cannot be fully applicable to complex site situations,e.g.landslides with multi-sliding surfaces and pile-soil interface separation as discussed herein.In view of this,the combination of distributed fiber optic sensing(DFOS)and strain-internal force conversion methods was proposed to evaluate the working conditions of an anti-sliding pile in a typical retrogressive landslide in the Three Gorges reservoir area,China.Brillouin optical time domain reflectometry(BOTDR)was utilized to monitor the strain distri-bution along the pile.Next,by analyzing the relative deformation between the pile and its adjacent inclinometer,the pile-soil interface separation was profiled.Finally,the internal forces of the anti-slide pile were derived based on the strain-internal force conversion method.According to the ratio of calculated internal forces to the design values,the working conditions of the anti-slide pile could be evaluated.The results demonstrated that the proposed method could reveal the deformation pattern of the anti-slide pile system,and can quantitatively evaluate its working conditions.展开更多
The spread of tuberculosis(TB),especially multidrug-resistant TB and extensively drug-resistant TB,has strongly motivated the research and development of new anti-TB drugs.New strategies to facilitate drug combination...The spread of tuberculosis(TB),especially multidrug-resistant TB and extensively drug-resistant TB,has strongly motivated the research and development of new anti-TB drugs.New strategies to facilitate drug combinations,including pharmacokinetics-guided dose optimization and toxicology studies of first-and second-line anti-TB drugs have also been introduced and recommended.Liquid chromatography-mass spectrometry(LC-MS)has arguably become the gold standard in the analysis of both endo-and exo-genous compounds.This technique has been applied successfully not only for therapeutic drug monitoring(TDM)but also for pharmacometabolomics analysis.TDM improves the effectiveness of treatment,reduces adverse drug reactions,and the likelihood of drug resistance development in TB patients by determining dosage regimens that produce concentrations within the therapeutic target window.Based on TDM,the dose would be optimized individually to achieve favorable outcomes.Pharmacometabolomics is essential in generating and validating hypotheses regarding the metabolism of anti-TB drugs,aiding in the discovery of potential biomarkers for TB diagnostics,treatment monitoring,and outcome evaluation.This article highlighted the current progresses in TDM of anti-TB drugs based on LC-MS bioassay in the last two decades.Besides,we discussed the advantages and disadvantages of this technique in practical use.The pressing need for non-invasive sampling approaches and stability studies of anti-TB drugs was highlighted.Lastly,we provided perspectives on the prospects of combining LC-MS-based TDM and pharmacometabolomics with other advanced strategies(pharmacometrics,drug and vaccine developments,machine learning/artificial intelligence,among others)to encapsulate in an all-inclusive approach to improve treatment outcomes of TB patients.展开更多
Triboelectric nanogenerators(TENGs)have emerged as promising candidates for integrating with flexible electronics as self-powered systems owing to their intrinsic flexibility,biocompatibility,and miniaturization.In th...Triboelectric nanogenerators(TENGs)have emerged as promising candidates for integrating with flexible electronics as self-powered systems owing to their intrinsic flexibility,biocompatibility,and miniaturization.In this study,an improved flexible TENG with a tile-nanostructured MXene/polymethyl methacrylate(PMMA)composite electrode(MP-TENG)is proposed for use in wireless human health monitor.The multifunctional tile-nanostructured MXene/PMMA film,which is self-assembled through vacuum filtration,exhibits good conductivity,excellent charge capacity,and high flexibility.Thus,the MXene/PMMA composite electrode can simultaneously function as a charge-generating,charge-trapping,and charge-collecting layer.Furthermore,the charge-trapping capacity of a tile nanostructure can be optimized on the basis of the PMMA concentration.At a mass fraction of 4%PMMA,the MP-TENG achieves the optimal output performance,with an output voltage of 37.8 V,an output current of 1.8μA,and transferred charge of 14.1 nC.The output power is enhanced over twofold compared with the pure MXene-based TENG.Moreover,the MP-TENG has sufficient power capacity and durability to power small electronic devices.Finally,a wireless human motion monitor based on the MP-TENG is utilized to detect physiological signals in various kinematic motions.Consequently,the proposed performance-enhanced MP-TENG proves a considerable potential for use in health monitoring,telemedicine,and self-powered systems.展开更多
The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy ...The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.展开更多
The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has b...The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Furthermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms.展开更多
Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,...Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,and ultraviolet(UV)-induced aging problems pose significant constraints on their potential applications.Here,an ultra-elas-tic,highly breathable,and thermal-comfortable epidermal sensor with exceptional UV-EMI shielding performance and remarkable thermal conductivity is developed for high-fidelity monitoring of multiple human electrophysiological signals.Via filling the elastomeric microfibers with thermally conductive boron nitride nanoparticles and bridging the insulating fiber interfaces by plating Ag nanoparticles(NPs),an interwoven thermal con-ducting fiber network(0.72 W m^(-1) K^(-1))is constructed benefiting from the seamless thermal interfaces,facilitating unimpeded heat dissipation for comfort skin wearing.More excitingly,the elastomeric fiber substrates simultaneously achieve outstanding UV protection(UPF=143.1)and EMI shielding(SET>65,X-band)capabilities owing to the high electrical conductivity and surface plasmon resonance of Ag NPs.Furthermore,an electronic textile prepared by printing liquid metal on the UV-EMI shielding and thermally conductive nonwoven textile is finally utilized as an advanced epidermal sensor,which succeeds in monitoring different electrophysiological signals under vigorous electromagnetic interference.This research paves the way for developing protective and environmentally adaptive epidermal electronics for next-generation health regulation.展开更多
Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly fou...Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly found in diabetic patients with DKD and especially ESKD,as a result of impaired renal metabolism.It is essential to monitor glycemia for effective management of DKD.Hemoglobin A1c(HbA1c)has long been considered as the gold standard for monitoring glycemia for>3 months.However,assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction.Continuous glucose monitoring(CGM)has provided new insights on glycemic assessment and management.CGM directly measures glucose level in interstitial fluid,reports real-time or retrospective glucose concentration,and provides multiple glycemic metrics.It avoids the pitfalls of HbA1c in some contexts,and may serve as a precise alternative to estimation of mean glucose and glycemic variability.Emerging studies have demonstrated the merits of CGM for precise monitoring,which allows fine-tuning of glycemic management in diabetic patients.Therefore,CGM technology has the potential for better glycemic monitoring in DKD patients.More research is needed to explore its application and management in different stages of DKD,including hemodialysis,peritoneal dialysis and kidney transplantation.展开更多
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis...This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.展开更多
Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These...Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources.展开更多
The monitoring system of ship cabin based on single chip computer is introduced. The system can inspect the signal circulatively coming from sensors of all kinds, and give alarm when limit is broken. It demonstrated t...The monitoring system of ship cabin based on single chip computer is introduced. The system can inspect the signal circulatively coming from sensors of all kinds, and give alarm when limit is broken. It demonstrated the working principles, hardware block diagram and software flow diagram of the system.展开更多
Monitoring seismicity in real time provides significant benefits for timely earthquake warning and analyses.In this study,we propose an automatic workflow based on machine learning(ML)to monitor seismicity in the sout...Monitoring seismicity in real time provides significant benefits for timely earthquake warning and analyses.In this study,we propose an automatic workflow based on machine learning(ML)to monitor seismicity in the southern Sichuan Basin of China.This workflow includes coherent event detection,phase picking,and earthquake location using three-component data from a seismic network.By combining Phase Net,we develop an ML-based earthquake location model called Phase Loc,to conduct real-time monitoring of the local seismicity.The approach allows us to use synthetic samples covering the entire study area to train Phase Loc,addressing the problems of insufficient data samples,imbalanced data distribution,and unreliable labels when training with observed data.We apply the trained model to observed data recorded in the southern Sichuan Basin,China,between September 2018 and March 2019.The results show that the average differences in latitude,longitude,and depth are 5.7 km,6.1 km,and 2 km,respectively,compared to the reference catalog.Phase Loc combines all available phase information to make fast and reliable predictions,even if only a few phases are detected and picked.The proposed workflow may help real-time seismic monitoring in other regions as well.展开更多
Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicato...Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicators of natural disaster risk monitoring are complex.How to achieve intelligent perception and monitoring of natural disaster risk for immovable cultural relics has always been a focus and a challenge for researchers.Based on the analysis of the concepts and issues related to the natural disaster risk of immovable cultural relics,this paper proposes a framework for natural disaster risk monitoring for immovable cultural relics based on the digital twin.This framework focuses on risk monitoring,including the physical entities of natural disaster risk for immovable cultural relics,monitoring indicators,and virtual entity construction.A platform for monitoring the natural disaster risk of immovable cultural relics is proposed.Using the Puzhou Ancient City Site as a test bed,the proposed concept can be used for monitoring the natural disaster risk of immovable cultural relics at different scales.展开更多
Computer vision(CV)methods for measurement of structural vibration are less expensive,and their application is more straightforward than methods based on sensors that measure physical quantities at particular points o...Computer vision(CV)methods for measurement of structural vibration are less expensive,and their application is more straightforward than methods based on sensors that measure physical quantities at particular points of a structure.However,CV methods produce significantly more measurement errors.Thus,computer vision-based structural health monitoring(CVSHM)requires appropriate methods of damage assessment that are robust with respect to highly contaminated measurement data.In this paper a complete CVSHM framework is proposed,and three damage assessment methods are tested.The first is the augmented inverse estimate(AIE),proposed by Peng et al.in 2021.This method is designed to work with highly contaminated measurement data,but it fails with a large noise provided by CV measurement.The second method,as proposed in this paper,is based on the AIE,but it introduces a weighting matrix that enhances the conditioning of the problem.The third method,also proposed in this paper,introduces additional constraints in the optimization process;these constraints ensure that the stiffness of structural elements can only decrease.Both proposed methods perform better than the original AIE.The latter of the two proposed methods gives the best results,and it is robust with respect to the selected coefficients,as required by the algorithm.展开更多
In order to ensure the safety,quality and efficiency of computer numerical control(CNC)machine tool processing,a real-time monitoring and visible solution for CNC machine tools based on hyper text markup language(HTML...In order to ensure the safety,quality and efficiency of computer numerical control(CNC)machine tool processing,a real-time monitoring and visible solution for CNC machine tools based on hyper text markup language(HTML)5 is proposed.The characteristics of the real-time monitoring technology of CNC machine tools under the traditional Client/Server(C/S)structure are compared and analyzed,and the technical drawbacks are proposed.Web real-time communication technology and browser drawing technology are deeply studied.A real-time monitoring and visible system for CNC machine tool data is developed based on Metro platform,combining WebSocket real-time communication technology and Canvas drawing technology.The system architecture is given,and the functions and implementation methods of the system are described in detail.The practical application results show that the WebSocket real-time communication technology can effectively reduce the bandwidth and network delay and save server resources.The numerical control machine data monitoring system can intuitively reflect the machine data,and the visible effect is good.It realizes timely monitoring of equipment alarms and prompts maintenance and management personnel.展开更多
The coronavirus(COVID-19)is a lethal virus causing a rapidly infec-tious disease throughout the globe.Spreading awareness,taking preventive mea-sures,imposing strict restrictions on public gatherings,wearing facial ma...The coronavirus(COVID-19)is a lethal virus causing a rapidly infec-tious disease throughout the globe.Spreading awareness,taking preventive mea-sures,imposing strict restrictions on public gatherings,wearing facial masks,and maintaining safe social distancing have become crucial factors in keeping the virus at bay.Even though the world has spent a whole year preventing and curing the disease caused by the COVID-19 virus,the statistics show that the virus can cause an outbreak at any time on a large scale if thorough preventive measures are not maintained accordingly.Tofight the spread of this virus,technologically developed systems have become very useful.However,the implementation of an automatic,robust,continuous,and lightweight monitoring system that can be efficiently deployed on an embedded device still has not become prevalent in the mass community.This paper aims to develop an automatic system to simul-taneously detect social distance and face mask violation in real-time that has been deployed in an embedded system.A modified version of a convolutional neural network,the ResNet50 model,has been utilized to identify masked faces in peo-ple.You Only Look Once(YOLOv3)approach is applied for object detection and the DeepSORT technique is used to measure the social distance.The efficiency of the proposed model is tested on real-time video sequences taken from a video streaming source from an embedded system,Jetson Nano edge computing device,and smartphones,Android and iOS applications.Empirical results show that the implemented model can efficiently detect facial masks and social distance viola-tions with acceptable accuracy and precision scores.展开更多
1.Development of thermal powerplant monitoring system inChina and the HN-3000 systemThe China power industry,especially theelectric power industry,takes a strategic priorityposition in the development of China’s nati...1.Development of thermal powerplant monitoring system inChina and the HN-3000 systemThe China power industry,especially theelectric power industry,takes a strategic priorityposition in the development of China’s nationaleconomy.There are,therefore,a great numberof 200 MW,300 MW and 600 MW units on thenew installation list for satisfying the strategicneed.For the secure and economical operationof these units,up to a thousand parameters oneach unit have to be monitored.Thus,comput-erization of monitering is a stringent necessity.We started experiments on application ofcomputer to power plant control at Nanshi andGaojing power plants early in 1964,But展开更多
This paper focuses on the key technologies of P2P and network traffic monitoring, research and analyze the traditional P2P flow control technology and the working principle of deployment, discuss on the straight loss ...This paper focuses on the key technologies of P2P and network traffic monitoring, research and analyze the traditional P2P flow control technology and the working principle of deployment, discuss on the straight loss and bypass interference control technology, and the reasonable combination of two kinds of technology to design straight bypass joint deployment. On basis of it, we design a new P2P traffic monitoring system. Through the design and implementation of computer network traffic monitoring system based on C/S mode to achieve automatic control, maintenance, and monitor network traffic, which is suitable for the current engineering software to monitor a network application environment. From the network users and network operator' s perspective, monitoring of network traffic is scientific, reasonable that improve network management and it has important research value.展开更多
Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vul...Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vulnerable to various attacks.Traditional encryption and authentication mechanisms cannot prevent attacks launched by internal malicious nodes.The trust-based security mechanism is usually adopted to solve this problem in WSNs.However,the behavioral evidence used for trust estimation presents some uncertainties due to the open wireless medium and the inexpensive sensor nodes.Moreover,how to efficiently collect behavioral evidences are rarely discussed.To address these issues,in this paper,we present a trust management mechanism based on fuzzy logic and a cloud model.First,a type-II fuzzy logic system is used to preprocess the behavioral evidences and alleviate uncertainty.Then,the cloud model is introduced to estimate the trust values for sensor nodes.Finally,a dynamic behavior monitoring protocol is proposed to provide a balance between energy conservation and safety assurance.Simulation results demonstrate that our trust management mechanism can effectively protect the network from internal malicious attacks while enhancing the energy efficiency of behavior monitoring.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52371049)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(YESS,No.2020QNRC001)the National Science and Technology Resources Investigation Program of China(Nos.2021FY100603 and 2019FY101404)。
文摘The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.
基金supported in part by funding from the US Army Corps of Engineers under a project entitled ‘‘Cybermodeling: A Digital Surrogate Approach for Optimal Risk-Based Operations and Infrastructure” (W912HZ-17-2-0024)
文摘Computer vision techniques, in conjunction with acquisition through remote cameras and unmanned aerial vehicles (UAVs), offer promising non-contact solutions to civil infrastructure condition assessment. The ultimate goal of such a system is to automatically and robustly convert the image or video data into actionable information. This paper provides an overview of recent advances in computer vision techniques as they apply to the problem of civil infrastructure condition assessment. In particular, relevant research in the fields of computer vision, machine learning, and structural engineering is presented. The work reviewed is classified into two types: inspection applications and monitoring applications. The inspection applications reviewed include identifying context such as structural components, characterizing local and global visible damage, and detecting changes from a reference image. The monitoring applications discussed include static measurement of strain and displacement, as well as dynamic measurement of displacement for modal analysis. Subsequently, some of the key challenges that persist toward the goal of automated vision-based civil infrastructure and monitoring are presented. The paper concludes with ongoing work aimed at addressing some of these stated challenges.
基金The authors gratefully acknowledge the financial support pro-vided by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.41907232)the National Science Fund for Distinguished Young Scholars of China(Grant No.42225702)the State Key Program of National Natural Science Foundation of China(Grant No.41230636).
文摘Anti-slide piles are one of the most important reinforcement structures against landslides,and evalu-ating the working conditions is of great significance for landslide mitigation.The widely adopted analytical methods of pile internal forces include cantilever beam method and elastic foundation beam method.However,due to many assumptions involved in calculation,the analytical models cannot be fully applicable to complex site situations,e.g.landslides with multi-sliding surfaces and pile-soil interface separation as discussed herein.In view of this,the combination of distributed fiber optic sensing(DFOS)and strain-internal force conversion methods was proposed to evaluate the working conditions of an anti-sliding pile in a typical retrogressive landslide in the Three Gorges reservoir area,China.Brillouin optical time domain reflectometry(BOTDR)was utilized to monitor the strain distri-bution along the pile.Next,by analyzing the relative deformation between the pile and its adjacent inclinometer,the pile-soil interface separation was profiled.Finally,the internal forces of the anti-slide pile were derived based on the strain-internal force conversion method.According to the ratio of calculated internal forces to the design values,the working conditions of the anti-slide pile could be evaluated.The results demonstrated that the proposed method could reveal the deformation pattern of the anti-slide pile system,and can quantitatively evaluate its working conditions.
基金sponsored by the National Research Foundation of Korea(NRF)Grant funded by the Korean government(MSIT)(Grant No.:2018R1A5A2021242).
文摘The spread of tuberculosis(TB),especially multidrug-resistant TB and extensively drug-resistant TB,has strongly motivated the research and development of new anti-TB drugs.New strategies to facilitate drug combinations,including pharmacokinetics-guided dose optimization and toxicology studies of first-and second-line anti-TB drugs have also been introduced and recommended.Liquid chromatography-mass spectrometry(LC-MS)has arguably become the gold standard in the analysis of both endo-and exo-genous compounds.This technique has been applied successfully not only for therapeutic drug monitoring(TDM)but also for pharmacometabolomics analysis.TDM improves the effectiveness of treatment,reduces adverse drug reactions,and the likelihood of drug resistance development in TB patients by determining dosage regimens that produce concentrations within the therapeutic target window.Based on TDM,the dose would be optimized individually to achieve favorable outcomes.Pharmacometabolomics is essential in generating and validating hypotheses regarding the metabolism of anti-TB drugs,aiding in the discovery of potential biomarkers for TB diagnostics,treatment monitoring,and outcome evaluation.This article highlighted the current progresses in TDM of anti-TB drugs based on LC-MS bioassay in the last two decades.Besides,we discussed the advantages and disadvantages of this technique in practical use.The pressing need for non-invasive sampling approaches and stability studies of anti-TB drugs was highlighted.Lastly,we provided perspectives on the prospects of combining LC-MS-based TDM and pharmacometabolomics with other advanced strategies(pharmacometrics,drug and vaccine developments,machine learning/artificial intelligence,among others)to encapsulate in an all-inclusive approach to improve treatment outcomes of TB patients.
基金supported by the National Natural Science Foundation of China(No.52201043,T2125003,12174172)the Natural Science Foundation of Fujian(Nos.2020J01857)+1 种基金the Fuzhou Institute of Oceanography project(No.2021F06)the Fuzhou City Science and Technology Cooperation Project(2021-S-091,2022-R-003)
文摘Triboelectric nanogenerators(TENGs)have emerged as promising candidates for integrating with flexible electronics as self-powered systems owing to their intrinsic flexibility,biocompatibility,and miniaturization.In this study,an improved flexible TENG with a tile-nanostructured MXene/polymethyl methacrylate(PMMA)composite electrode(MP-TENG)is proposed for use in wireless human health monitor.The multifunctional tile-nanostructured MXene/PMMA film,which is self-assembled through vacuum filtration,exhibits good conductivity,excellent charge capacity,and high flexibility.Thus,the MXene/PMMA composite electrode can simultaneously function as a charge-generating,charge-trapping,and charge-collecting layer.Furthermore,the charge-trapping capacity of a tile nanostructure can be optimized on the basis of the PMMA concentration.At a mass fraction of 4%PMMA,the MP-TENG achieves the optimal output performance,with an output voltage of 37.8 V,an output current of 1.8μA,and transferred charge of 14.1 nC.The output power is enhanced over twofold compared with the pure MXene-based TENG.Moreover,the MP-TENG has sufficient power capacity and durability to power small electronic devices.Finally,a wireless human motion monitor based on the MP-TENG is utilized to detect physiological signals in various kinematic motions.Consequently,the proposed performance-enhanced MP-TENG proves a considerable potential for use in health monitoring,telemedicine,and self-powered systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.42264004,42274033,and 41904012)the Open Fund of Hubei Luojia Laboratory(Grant Nos.2201000049 and 230100018)+2 种基金the Guangxi Universities’1,000 Young and Middle-aged Backbone Teachers Training Program,the Fundamental Research Funds for Central Universities(Grant No.2042022kf1197)the Natural Science Foundation of Hubei(Grant No.2020CFB282)the China Postdoctoral Science Foundation(Grant Nos.2020T130482,2018M630879)。
文摘The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFB4200705)the National Natural Science Foundation of China(Grant No.52109146)。
文摘The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Furthermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms.
基金financially supported by the National Natural Science Foundation of China(52373079,52161135302,52233006)the China Postdoctoral Science Foundation(2022M711355)the Natural Science Foundation of Jiangsu Province(BK20221540).
文摘Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains,whereas susceptibility to elec-tromagnetic interference(EMI),heat accumulation issues,and ultraviolet(UV)-induced aging problems pose significant constraints on their potential applications.Here,an ultra-elas-tic,highly breathable,and thermal-comfortable epidermal sensor with exceptional UV-EMI shielding performance and remarkable thermal conductivity is developed for high-fidelity monitoring of multiple human electrophysiological signals.Via filling the elastomeric microfibers with thermally conductive boron nitride nanoparticles and bridging the insulating fiber interfaces by plating Ag nanoparticles(NPs),an interwoven thermal con-ducting fiber network(0.72 W m^(-1) K^(-1))is constructed benefiting from the seamless thermal interfaces,facilitating unimpeded heat dissipation for comfort skin wearing.More excitingly,the elastomeric fiber substrates simultaneously achieve outstanding UV protection(UPF=143.1)and EMI shielding(SET>65,X-band)capabilities owing to the high electrical conductivity and surface plasmon resonance of Ag NPs.Furthermore,an electronic textile prepared by printing liquid metal on the UV-EMI shielding and thermally conductive nonwoven textile is finally utilized as an advanced epidermal sensor,which succeeds in monitoring different electrophysiological signals under vigorous electromagnetic interference.This research paves the way for developing protective and environmentally adaptive epidermal electronics for next-generation health regulation.
基金Supported by Natural Science Foundation of Zhejiang Province,No.LY23H050005and Zhejiang Medical Technology Project,No.2022RC009.
文摘Diabetic kidney disease(DKD)is a common complication of diabetes mellitus that contributes to the risk of end-stage kidney disease(ESKD).Wide glycemic var-iations,such as hypoglycemia and hyperglycemia,are broadly found in diabetic patients with DKD and especially ESKD,as a result of impaired renal metabolism.It is essential to monitor glycemia for effective management of DKD.Hemoglobin A1c(HbA1c)has long been considered as the gold standard for monitoring glycemia for>3 months.However,assessment of HbA1c has some bias as it is susceptible to factors such as anemia and liver or kidney dysfunction.Continuous glucose monitoring(CGM)has provided new insights on glycemic assessment and management.CGM directly measures glucose level in interstitial fluid,reports real-time or retrospective glucose concentration,and provides multiple glycemic metrics.It avoids the pitfalls of HbA1c in some contexts,and may serve as a precise alternative to estimation of mean glucose and glycemic variability.Emerging studies have demonstrated the merits of CGM for precise monitoring,which allows fine-tuning of glycemic management in diabetic patients.Therefore,CGM technology has the potential for better glycemic monitoring in DKD patients.More research is needed to explore its application and management in different stages of DKD,including hemodialysis,peritoneal dialysis and kidney transplantation.
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region(152131/18E).
文摘This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.
基金support of the National Natural Science Foundation of China(Grant Nos.U2240221 and 41977229)the Sichuan Youth Science and Technology Innovation Research Team Project(Grant No.2020JDTD0006).
文摘Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources.
文摘The monitoring system of ship cabin based on single chip computer is introduced. The system can inspect the signal circulatively coming from sensors of all kinds, and give alarm when limit is broken. It demonstrated the working principles, hardware block diagram and software flow diagram of the system.
基金the financial support of the National Key R&D Program of China(2021YFC3000701)the China Seismic Experimental Site in Sichuan-Yunnan(CSES-SY)。
文摘Monitoring seismicity in real time provides significant benefits for timely earthquake warning and analyses.In this study,we propose an automatic workflow based on machine learning(ML)to monitor seismicity in the southern Sichuan Basin of China.This workflow includes coherent event detection,phase picking,and earthquake location using three-component data from a seismic network.By combining Phase Net,we develop an ML-based earthquake location model called Phase Loc,to conduct real-time monitoring of the local seismicity.The approach allows us to use synthetic samples covering the entire study area to train Phase Loc,addressing the problems of insufficient data samples,imbalanced data distribution,and unreliable labels when training with observed data.We apply the trained model to observed data recorded in the southern Sichuan Basin,China,between September 2018 and March 2019.The results show that the average differences in latitude,longitude,and depth are 5.7 km,6.1 km,and 2 km,respectively,compared to the reference catalog.Phase Loc combines all available phase information to make fast and reliable predictions,even if only a few phases are detected and picked.The proposed workflow may help real-time seismic monitoring in other regions as well.
基金National Natural Science Foundation of China(Nos.42171444,42301516)Beijing Natural Science Foundation Project-Municipal Education Commission Joint Fund Project(No.KZ202110016021)Beijing Municipal Education Commission Scientific Research Project-Science and Technology Plan General Project(No.KM202110016005).
文摘Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicators of natural disaster risk monitoring are complex.How to achieve intelligent perception and monitoring of natural disaster risk for immovable cultural relics has always been a focus and a challenge for researchers.Based on the analysis of the concepts and issues related to the natural disaster risk of immovable cultural relics,this paper proposes a framework for natural disaster risk monitoring for immovable cultural relics based on the digital twin.This framework focuses on risk monitoring,including the physical entities of natural disaster risk for immovable cultural relics,monitoring indicators,and virtual entity construction.A platform for monitoring the natural disaster risk of immovable cultural relics is proposed.Using the Puzhou Ancient City Site as a test bed,the proposed concept can be used for monitoring the natural disaster risk of immovable cultural relics at different scales.
基金National Science Centre,Poland Granted Through the Project 2020/39/B/ST8/02615。
文摘Computer vision(CV)methods for measurement of structural vibration are less expensive,and their application is more straightforward than methods based on sensors that measure physical quantities at particular points of a structure.However,CV methods produce significantly more measurement errors.Thus,computer vision-based structural health monitoring(CVSHM)requires appropriate methods of damage assessment that are robust with respect to highly contaminated measurement data.In this paper a complete CVSHM framework is proposed,and three damage assessment methods are tested.The first is the augmented inverse estimate(AIE),proposed by Peng et al.in 2021.This method is designed to work with highly contaminated measurement data,but it fails with a large noise provided by CV measurement.The second method,as proposed in this paper,is based on the AIE,but it introduces a weighting matrix that enhances the conditioning of the problem.The third method,also proposed in this paper,introduces additional constraints in the optimization process;these constraints ensure that the stiffness of structural elements can only decrease.Both proposed methods perform better than the original AIE.The latter of the two proposed methods gives the best results,and it is robust with respect to the selected coefficients,as required by the algorithm.
文摘In order to ensure the safety,quality and efficiency of computer numerical control(CNC)machine tool processing,a real-time monitoring and visible solution for CNC machine tools based on hyper text markup language(HTML)5 is proposed.The characteristics of the real-time monitoring technology of CNC machine tools under the traditional Client/Server(C/S)structure are compared and analyzed,and the technical drawbacks are proposed.Web real-time communication technology and browser drawing technology are deeply studied.A real-time monitoring and visible system for CNC machine tool data is developed based on Metro platform,combining WebSocket real-time communication technology and Canvas drawing technology.The system architecture is given,and the functions and implementation methods of the system are described in detail.The practical application results show that the WebSocket real-time communication technology can effectively reduce the bandwidth and network delay and save server resources.The numerical control machine data monitoring system can intuitively reflect the machine data,and the visible effect is good.It realizes timely monitoring of equipment alarms and prompts maintenance and management personnel.
文摘The coronavirus(COVID-19)is a lethal virus causing a rapidly infec-tious disease throughout the globe.Spreading awareness,taking preventive mea-sures,imposing strict restrictions on public gatherings,wearing facial masks,and maintaining safe social distancing have become crucial factors in keeping the virus at bay.Even though the world has spent a whole year preventing and curing the disease caused by the COVID-19 virus,the statistics show that the virus can cause an outbreak at any time on a large scale if thorough preventive measures are not maintained accordingly.Tofight the spread of this virus,technologically developed systems have become very useful.However,the implementation of an automatic,robust,continuous,and lightweight monitoring system that can be efficiently deployed on an embedded device still has not become prevalent in the mass community.This paper aims to develop an automatic system to simul-taneously detect social distance and face mask violation in real-time that has been deployed in an embedded system.A modified version of a convolutional neural network,the ResNet50 model,has been utilized to identify masked faces in peo-ple.You Only Look Once(YOLOv3)approach is applied for object detection and the DeepSORT technique is used to measure the social distance.The efficiency of the proposed model is tested on real-time video sequences taken from a video streaming source from an embedded system,Jetson Nano edge computing device,and smartphones,Android and iOS applications.Empirical results show that the implemented model can efficiently detect facial masks and social distance viola-tions with acceptable accuracy and precision scores.
文摘1.Development of thermal powerplant monitoring system inChina and the HN-3000 systemThe China power industry,especially theelectric power industry,takes a strategic priorityposition in the development of China’s nationaleconomy.There are,therefore,a great numberof 200 MW,300 MW and 600 MW units on thenew installation list for satisfying the strategicneed.For the secure and economical operationof these units,up to a thousand parameters oneach unit have to be monitored.Thus,comput-erization of monitering is a stringent necessity.We started experiments on application ofcomputer to power plant control at Nanshi andGaojing power plants early in 1964,But
文摘This paper focuses on the key technologies of P2P and network traffic monitoring, research and analyze the traditional P2P flow control technology and the working principle of deployment, discuss on the straight loss and bypass interference control technology, and the reasonable combination of two kinds of technology to design straight bypass joint deployment. On basis of it, we design a new P2P traffic monitoring system. Through the design and implementation of computer network traffic monitoring system based on C/S mode to achieve automatic control, maintenance, and monitor network traffic, which is suitable for the current engineering software to monitor a network application environment. From the network users and network operator' s perspective, monitoring of network traffic is scientific, reasonable that improve network management and it has important research value.
基金supported in part by the Chongqing Electronics Engineering Technology Research Center for Interactive Learningin part by the Chongqing key discipline of electronic informationin part by the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202201630)。
文摘Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vulnerable to various attacks.Traditional encryption and authentication mechanisms cannot prevent attacks launched by internal malicious nodes.The trust-based security mechanism is usually adopted to solve this problem in WSNs.However,the behavioral evidence used for trust estimation presents some uncertainties due to the open wireless medium and the inexpensive sensor nodes.Moreover,how to efficiently collect behavioral evidences are rarely discussed.To address these issues,in this paper,we present a trust management mechanism based on fuzzy logic and a cloud model.First,a type-II fuzzy logic system is used to preprocess the behavioral evidences and alleviate uncertainty.Then,the cloud model is introduced to estimate the trust values for sensor nodes.Finally,a dynamic behavior monitoring protocol is proposed to provide a balance between energy conservation and safety assurance.Simulation results demonstrate that our trust management mechanism can effectively protect the network from internal malicious attacks while enhancing the energy efficiency of behavior monitoring.