AIM:To evaluate the effect of miRNA-451 on rhesus macaque choroid-retinal endothelial(RF/6A)cell function and proteome profile.METHODS:The RF/6A cells were transfected with miRNA-451 mimic and inhibitor.The role of mi...AIM:To evaluate the effect of miRNA-451 on rhesus macaque choroid-retinal endothelial(RF/6A)cell function and proteome profile.METHODS:The RF/6A cells were transfected with miRNA-451 mimic and inhibitor.The role of miRNA-451 on proliferation ability was evaluated by CCK-8 assay.Furthermore,iTRAQ quantitative proteomic analysis was applied to comprehensively illuminate the change of cellular proteins and biological function between different groups.RESULTS:In miRNA-451 overexpression group,cell proliferation of RF/6A decreased both at 24 h and 48 h;while in miRNA-451 inhibition group,on the contrary,RF/6A cell proliferation was increased at 48 h.Based on iTRAQ quantitative proteomic analysis,23 differentially expressed proteins(DEPs)were detected in the comparison of miRNA-451 mimic and mimic control-transfected RF/6A cells,and 30 DEPs were identified in the comparison of RF/6A cells transfected with miRNA-451 inhibitor and inhibitor control.DEPs such as GORASP2,KRT1,SLC7 A2,RIC8 A,DDX42,CAP1,PCBP2 might be closely related to the inhibitory effect of miRNA-451 on RF/6A cell proliferation,while PCYT1 A,MGAT1,TUBB,MCU,SIL1,BID,MSH6 might account for the positive effect of miRNA-451 inhibitor on RF/6A cell growth.PTPN1,as the only protein exhibiting an opposite trend between miRNA-451 mimic and inhibitortransfected cells,was most likely accountable for the inhibition of miRNA-451 mimic on RF/6A cell growth,and the promotion of miRNA-451 inhibitor on RF/6A cell proliferation.CONCLUSION:miRNA-451 overexpression can suppress the growth of RF/6A cells while knockdown of miRNA-451 can promote RF/6A cell viability.Among all DEPs,increased PTPN1 is most likely to account for the negative regulation of miRNA-451 on RF/6A proliferation.miRNA-451 can be a protective factor for neovascular disease of fundus via regulating choroid retinal endothelial cell function.展开更多
基金Supported by grants from National Natural Science Foundation of China(No.81900891)Global Ophthalmology Awards Program 2020(No.482667)。
文摘AIM:To evaluate the effect of miRNA-451 on rhesus macaque choroid-retinal endothelial(RF/6A)cell function and proteome profile.METHODS:The RF/6A cells were transfected with miRNA-451 mimic and inhibitor.The role of miRNA-451 on proliferation ability was evaluated by CCK-8 assay.Furthermore,iTRAQ quantitative proteomic analysis was applied to comprehensively illuminate the change of cellular proteins and biological function between different groups.RESULTS:In miRNA-451 overexpression group,cell proliferation of RF/6A decreased both at 24 h and 48 h;while in miRNA-451 inhibition group,on the contrary,RF/6A cell proliferation was increased at 48 h.Based on iTRAQ quantitative proteomic analysis,23 differentially expressed proteins(DEPs)were detected in the comparison of miRNA-451 mimic and mimic control-transfected RF/6A cells,and 30 DEPs were identified in the comparison of RF/6A cells transfected with miRNA-451 inhibitor and inhibitor control.DEPs such as GORASP2,KRT1,SLC7 A2,RIC8 A,DDX42,CAP1,PCBP2 might be closely related to the inhibitory effect of miRNA-451 on RF/6A cell proliferation,while PCYT1 A,MGAT1,TUBB,MCU,SIL1,BID,MSH6 might account for the positive effect of miRNA-451 inhibitor on RF/6A cell growth.PTPN1,as the only protein exhibiting an opposite trend between miRNA-451 mimic and inhibitortransfected cells,was most likely accountable for the inhibition of miRNA-451 mimic on RF/6A cell growth,and the promotion of miRNA-451 inhibitor on RF/6A cell proliferation.CONCLUSION:miRNA-451 overexpression can suppress the growth of RF/6A cells while knockdown of miRNA-451 can promote RF/6A cell viability.Among all DEPs,increased PTPN1 is most likely to account for the negative regulation of miRNA-451 on RF/6A proliferation.miRNA-451 can be a protective factor for neovascular disease of fundus via regulating choroid retinal endothelial cell function.