A monotonicity formula for stable solutions to a class of weighted semilinear elliptic equations with "negative exponent" is established. It is well known that such a monotonieity formula plays an essential role in ...A monotonicity formula for stable solutions to a class of weighted semilinear elliptic equations with "negative exponent" is established. It is well known that such a monotonieity formula plays an essential role in the study of finite Morse index solutions of equations with "positive exponent". Unlike the positive exponent case, we will see that both the monotonicity formula and the sub-harmonicity play crucial roles in classifying positive finite Morse index solutions to the equations with negative exponent and obtaining sharp results for their asymptotic behaviors.展开更多
The authors establish a general monotonicity formula for the following elliptic system △ui+fi(x,ui,…,um)=0 in Ω,where Ω belong to belong to R^n is a regular domain, (fi(x, u1,... ,um)) = △↓F(x,→↑u), F...The authors establish a general monotonicity formula for the following elliptic system △ui+fi(x,ui,…,um)=0 in Ω,where Ω belong to belong to R^n is a regular domain, (fi(x, u1,... ,um)) = △↓F(x,→↑u), F(x,→↑u ) is a given smooth function of x ∈ R^n and →↑u = (u1,…,um) ∈ R^m. The system comes from understanding the stationary case of Ginzburg-Landau model. A new monotonicity formula is also set up for the following parabolic systemδtui-△ui-fi(x,ui,…,um)=0 in(ti,t2)×R^n,where t1 〈 t2 are two constants, (fi(x,→↑u ) is given as above. The new monotonicity formulae are focused more attention on the monotonicity of nonlinear terms. The new point of the results is that an index β is introduced to measure the monotonicity of the nonlinear terms in the problems. The index β in the study of monotonieity formulae is useful in understanding the behavior of blow-up sequences of solutions. Another new feature is that the previous monotonicity formulae are extended to nonhomogeneous nonlinearities. As applications, the Ginzburg-Landau model and some different generalizations to the free boundary problems are studied.展开更多
Let (M,g, e^-fdv) be a smooth metric measure space. In this paper, we con- sider two nonlinear weighted p-heat equations. Firstly, we derive a Li-Yau type gradient estimates for the positive solutions to the followi...Let (M,g, e^-fdv) be a smooth metric measure space. In this paper, we con- sider two nonlinear weighted p-heat equations. Firstly, we derive a Li-Yau type gradient estimates for the positive solutions to the following nonlinear weighted p-heat equationand f is a smooth function on M under the assumptionthat the m-dimensional nonnegative Bakry-Emery Ricci curvature. Secondly, we show an entropy monotonicity formula with nonnegative m-dimensional Bakry-Emery Ricci curva- ture which is a generalization to the results of Kotschwar and Ni [9], Li [7].展开更多
In this paper we investigate the complexity of several problems concerning 2CNF formulas. At first, we show that the minimal unsatisfiability problem for 2CNF formulas can be solved in linear time. Then we prove that ...In this paper we investigate the complexity of several problems concerning 2CNF formulas. At first, we show that the minimal unsatisfiability problem for 2CNF formulas can be solved in linear time. Then we prove that the problem determining if a 2CNF formula can be transformed to a minimal unsatisfiable formula is also solvable in linear time. Thirdly, we show the polynomial solvability of the satisfiability problem for symmetric monotone formulas in which all clauses has length 2 or ? n - k ( n is the ...展开更多
In this paper, we introduce the notion of Hermitian pluriharmonic maps from Hermitian manifold into Kiihler manifold. Assuming the domain manifolds possess some special exhaustion functions and the vecotor field V = J...In this paper, we introduce the notion of Hermitian pluriharmonic maps from Hermitian manifold into Kiihler manifold. Assuming the domain manifolds possess some special exhaustion functions and the vecotor field V = JMδJM satisfies some decay conditions, we use stress-energy tensors to establish some monotonicity formulas of partial energies of Hermitian pluriharmonic maps. These monotonicity inequalities enable us to derive some holomorphicity for these Hermitian pluriharmonic maps.展开更多
We prove Liouville type theorems for stable and finite Morse index H_(loc)^(1)∩L_(loc)^(∞)solutions of the nonlinear Schrodinger equation -Δu+λ|x|^(a)u=|x|b|^(u)|^(p-1)u in R^(N),where N≥2,λ>0,a,b>-2 and p...We prove Liouville type theorems for stable and finite Morse index H_(loc)^(1)∩L_(loc)^(∞)solutions of the nonlinear Schrodinger equation -Δu+λ|x|^(a)u=|x|b|^(u)|^(p-1)u in R^(N),where N≥2,λ>0,a,b>-2 and p>1,Our analysis reveals that all stable solutions of the equation must be zero for all p>1,Furthermore,finite Morse index solutions must be zero if N≥3 an p≥(N+2+2b)/(N-2).The main tools we use are integral estimates,a Pohozaev type identity and a monotonicity formula.展开更多
In this paper,we start to study the gradient flow of the functional L_(β) introduced by Han-Li-Sun in[8].As a first step,we show that if the initial surface is symplectic in a Kähler surface,then the symplectic ...In this paper,we start to study the gradient flow of the functional L_(β) introduced by Han-Li-Sun in[8].As a first step,we show that if the initial surface is symplectic in a Kähler surface,then the symplectic property is preserved along the gradient flow.Then we show that the singularity of the flow is characterized by the maximal norm of the second fundamental form.When β=1,we derive a monotonicity formula for the flow.As applications,we show that the l-tangent cone of the flow consists of the finite flat planes.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11171092 and 11271133)Innovation Scientists and Technicians Troop Construction Projects of Henan Province(Grant No.114200510011)
文摘A monotonicity formula for stable solutions to a class of weighted semilinear elliptic equations with "negative exponent" is established. It is well known that such a monotonieity formula plays an essential role in the study of finite Morse index solutions of equations with "positive exponent". Unlike the positive exponent case, we will see that both the monotonicity formula and the sub-harmonicity play crucial roles in classifying positive finite Morse index solutions to the equations with negative exponent and obtaining sharp results for their asymptotic behaviors.
基金Project supported by the National Natural Science Foundation of China (No. 10631020)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20060003002)
文摘The authors establish a general monotonicity formula for the following elliptic system △ui+fi(x,ui,…,um)=0 in Ω,where Ω belong to belong to R^n is a regular domain, (fi(x, u1,... ,um)) = △↓F(x,→↑u), F(x,→↑u ) is a given smooth function of x ∈ R^n and →↑u = (u1,…,um) ∈ R^m. The system comes from understanding the stationary case of Ginzburg-Landau model. A new monotonicity formula is also set up for the following parabolic systemδtui-△ui-fi(x,ui,…,um)=0 in(ti,t2)×R^n,where t1 〈 t2 are two constants, (fi(x,→↑u ) is given as above. The new monotonicity formulae are focused more attention on the monotonicity of nonlinear terms. The new point of the results is that an index β is introduced to measure the monotonicity of the nonlinear terms in the problems. The index β in the study of monotonieity formulae is useful in understanding the behavior of blow-up sequences of solutions. Another new feature is that the previous monotonicity formulae are extended to nonhomogeneous nonlinearities. As applications, the Ginzburg-Landau model and some different generalizations to the free boundary problems are studied.
基金supported by the Fundamental Research Fund for the Central Universities
文摘Let (M,g, e^-fdv) be a smooth metric measure space. In this paper, we con- sider two nonlinear weighted p-heat equations. Firstly, we derive a Li-Yau type gradient estimates for the positive solutions to the following nonlinear weighted p-heat equationand f is a smooth function on M under the assumptionthat the m-dimensional nonnegative Bakry-Emery Ricci curvature. Secondly, we show an entropy monotonicity formula with nonnegative m-dimensional Bakry-Emery Ricci curva- ture which is a generalization to the results of Kotschwar and Ni [9], Li [7].
文摘In this paper we investigate the complexity of several problems concerning 2CNF formulas. At first, we show that the minimal unsatisfiability problem for 2CNF formulas can be solved in linear time. Then we prove that the problem determining if a 2CNF formula can be transformed to a minimal unsatisfiable formula is also solvable in linear time. Thirdly, we show the polynomial solvability of the satisfiability problem for symmetric monotone formulas in which all clauses has length 2 or ? n - k ( n is the ...
基金supported by National Natural Science Foundation of China(Grant Nos.11271071,11201400,10971029 and 11026062)Project of Henan Provincial Department of Education(Grant No.2011A110015)Talent Youth Teacher Fund of Xinyang Normal University
文摘In this paper, we introduce the notion of Hermitian pluriharmonic maps from Hermitian manifold into Kiihler manifold. Assuming the domain manifolds possess some special exhaustion functions and the vecotor field V = JMδJM satisfies some decay conditions, we use stress-energy tensors to establish some monotonicity formulas of partial energies of Hermitian pluriharmonic maps. These monotonicity inequalities enable us to derive some holomorphicity for these Hermitian pluriharmonic maps.
基金Supported by University of Economics and Law,VNU-HCM。
文摘We prove Liouville type theorems for stable and finite Morse index H_(loc)^(1)∩L_(loc)^(∞)solutions of the nonlinear Schrodinger equation -Δu+λ|x|^(a)u=|x|b|^(u)|^(p-1)u in R^(N),where N≥2,λ>0,a,b>-2 and p>1,Our analysis reveals that all stable solutions of the equation must be zero for all p>1,Furthermore,finite Morse index solutions must be zero if N≥3 an p≥(N+2+2b)/(N-2).The main tools we use are integral estimates,a Pohozaev type identity and a monotonicity formula.
基金supported by theNationalNatural Science Foundation of China,Nos.11721101,12071352,12031017。
文摘In this paper,we start to study the gradient flow of the functional L_(β) introduced by Han-Li-Sun in[8].As a first step,we show that if the initial surface is symplectic in a Kähler surface,then the symplectic property is preserved along the gradient flow.Then we show that the singularity of the flow is characterized by the maximal norm of the second fundamental form.When β=1,we derive a monotonicity formula for the flow.As applications,we show that the l-tangent cone of the flow consists of the finite flat planes.