The maintenance of safety and dependability in rail and road embankments is of utmost importance in order to facilitate the smooth operation of transportation networks.This study introduces a comprehensive methodology...The maintenance of safety and dependability in rail and road embankments is of utmost importance in order to facilitate the smooth operation of transportation networks.This study introduces a comprehensive methodology for soil slope stability evaluation,employing Monte Carlo Simulation(MCS)and Subset Simulation(SS)with the"UPSS 3.0 Add-in"in MS-Excel.Focused on an 11.693-meter embankment with a soil slope(inclination ratio of 2H:1V),the investigation considers earthquake coefficients(kh)and pore water pressure ratios(ru)following Indian zoning requirements.The chance of slope failure showed a considerable increase as the Coefficient of Variation(COV),seismic coefficients(kh),and pore water pressure ratios(ru)experienced an escalation.The SS approach showed exceptional efficacy in calculating odds of failure that are notably low.Within computational modeling,the study optimized the worst-case scenario using ANFIS-GA,ANFIS-GWO,ANFIS-PSO,and ANFIS-BBO models.The ANFIS-PSO model exhibits exceptional accuracy(training R2=0.9011,RMSE=0.0549;testing R2=0.8968,RMSE=0.0615),emerging as the most promising.This study highlights the significance of conducting thorough risk assessments and offers practical insights into evaluating and improving the stability of soil slopes in transportation infrastructure.These findings contribute to the enhancement of safety and reliability in real-world situations.展开更多
The effect of spin-1 impurities doping on the magnetic properties of a spin-3/2 Ising nanotube is investigated using Monte Carlo simulations within the Blume-Emery-Griffiths model in the presence of an external magnet...The effect of spin-1 impurities doping on the magnetic properties of a spin-3/2 Ising nanotube is investigated using Monte Carlo simulations within the Blume-Emery-Griffiths model in the presence of an external magnetic field. The thermal behaviors of the order parameters and different macroscopic instabilities as well as the hysteretic behavior of the material are examined in great detail as a function of the dopant density. It is found that the impurities concentration affects all the system magnetic properties generating for some specific values, compensation points and multi-cycle hysteresis. Doping conditions where the saturation/remanent magnetization and coercive field of the investigated material can be modified for permanent or soft magnets synthesis purpose are discussed.展开更多
Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes d...Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes delineated by explicit optical characteristics,Monte Carlo simulations possess the theoretical capacity to render unparalleled accuracy in the depiction of exceedingly intricate phenomena.Nonetheless,the quintessential challenge associated with Monte Carlo simulation methodologies resides in their extended computational duration,which significantly impedes the refinement of their precision.Consequently,this discourse is specifically dedicated to exploring innovations in strategies and technologies aimed at expediting Monte Carlo simulations.It delves into the foundational concepts of various acceleration tactics,evaluates these strategies concerning their speed,accuracy,and practicality,and amalgamates a comprehensive overview and critique of acceleration methodologies for Monte Carlo simulations.Ultimately,the discourse envisages prospective trajectories for the employment of Monte Carlo techniques within the domain of tissue optics.展开更多
This study aimed to investigate the pollution characteristics, source apportionment, and health risks associated with trace metal(loid)s(TMs) in the major agricultural producing areas in Chongqing, China. We analyzed ...This study aimed to investigate the pollution characteristics, source apportionment, and health risks associated with trace metal(loid)s(TMs) in the major agricultural producing areas in Chongqing, China. We analyzed the source apportionment and assessed the health risk of TMs in agricultural soils by using positive matrix factorization(PMF) model and health risk assessment(HRA) model based on Monte Carlo simulation. Meanwhile, we combined PMF and HRA models to explore the health risks of TMs in agricultural soils by different pollution sources to determine the priority control factors. Results showed that the average contents of cadmium(Cd), arsenic (As), lead(Pb), chromium(Cr), copper(Cu), nickel(Ni), and zinc(Zn) in the soil were found to be 0.26, 5.93, 27.14, 61.32, 23.81, 32.45, and 78.65 mg/kg, respectively. Spatial analysis and source apportionment analysis revealed that urban and industrial sources, agricultural sources, and natural sources accounted for 33.0%, 27.7%, and 39.3% of TM accumulation in the soil, respectively. In the HRA model based on Monte Carlo simulation, noncarcinogenic risks were deemed negligible(hazard index <1), the carcinogenic risks were at acceptable level(10^(-6)<total carcinogenic risk ≤ 10^(-4)), with higher risks observed for children compared to adults. The relationship between TMs, their sources, and health risks indicated that urban and industrial sources were primarily associated with As, contributing to 75.1% of carcinogenic risks and 55.7% of non-carcinogenic risks, making them the primary control factors. Meanwhile, agricultural sources were primarily linked to Cd and Pb, contributing to 13.1% of carcinogenic risks and 21.8% of non-carcinogenic risks, designating them as secondary control factors.展开更多
Registrations based on the manual placement of spherical targets are still being employed by many professionals in the industry.However,the placement of those targets usually relies solely on personal experience witho...Registrations based on the manual placement of spherical targets are still being employed by many professionals in the industry.However,the placement of those targets usually relies solely on personal experience without scientific evidence supported by numerical analysis.This paper presents a comprehensive investigation,based on Monte Carlo simulation,into determining the optimal number and positions for efficient target placement in typical scenes consisting of a pair of facades.It demonstrates new check-up statistical rules and geometrical constraints that can effectively extract and analyze massive simulations of unregistered point clouds and their corresponding registrations.More than 6×10^(7) sets of the registrations were simulated,whereas more than IOO registrations with real data were used to verify the results of simulation.The results indicated that using five spherical targets is the best choice for the registration of a large typical registration site consisting of two vertical facades and a ground,when there is only a box set of spherical targets available.As a result,the users can avoid placing extra targets to achieve insignificant improvements in registration accuracy.The results also suggest that the higher registration accuracy can be obtained when the ratio between the facade-to-target distance and target-to-scanner distance is approximately 3:2.Therefore,the targets should be placed closer to the scanner rather than in the middle between the facades and the scanner,contradicting to the traditional thought. Besides,the results reveal that the accuracy can be increased by setting the largest projected triangular area of the targets to be large.展开更多
When multiphysics coupling calculations contain time-dependent Monte Carlo particle transport simulations, these simulations often account for the largest part of the calculation time, which is insufferable in certain...When multiphysics coupling calculations contain time-dependent Monte Carlo particle transport simulations, these simulations often account for the largest part of the calculation time, which is insufferable in certain important cases. This study proposes an adaptive strategy for automatically adjusting the sample size to fulfil more reasonable simulations. This is realized based on an extension of the Shannon entropy concept and is essentially different from the popular methods in timeindependent Monte Carlo particle transport simulations, such as controlling the sample size according to the relative error of a target tally or by experience. The results of the two models show that this strategy can yield almost similar results while significantly reducing the calculation time. Considering the efficiency, the sample size should not be increased blindly if the efficiency cannot be enhanced further. The strategy proposed herein satisfies this requirement.展开更多
Gamma ray shielding is essential to ensure the safety of personnel and equipment in facilities and environments where radiation exists.The Monte Carlo technique is vital for analyzing the gamma-ray shielding capabilit...Gamma ray shielding is essential to ensure the safety of personnel and equipment in facilities and environments where radiation exists.The Monte Carlo technique is vital for analyzing the gamma-ray shielding capabilities of materials.In this study,a simple Monte Carlo code,EJUSTCO,is developed to cd simulate gamma radiation transport in shielding materials for academic purposes.The code considers the photoelectric effect,Compton(incoherent)scattering,pair production,and photon annihilation as the dominant interaction mechanisms in the gamma radiation shielding problem.Variance reduction techniques,such as the Russian roulette,survival weighting,and exponential transformation,are incorporated into the code to improve computational efficiency.Predicting the exponential transformation parameter typically requires trial and error as well as expertise.Herein,a deep learning neural network is proposed as a viable method for predicting this parameter for the first time.The model achieves an MSE of 0.00076752 and an R-value of 0.99998.The exposure buildup factors and radiation dose rates due to the passage of gamma radiation with different source energies and varying thicknesses of lead,water,iron,concrete,and aluminum in single-,double-,and triple-layer material systems are validated by comparing the results with those of MCNP,ESG,ANS-6.4.3,MCBLD,MONTEREY MARK(M),PENELOPE,and experiments.Average errors of 5.6%,2.75%,and 10%are achieved for the exposure buildup factor in single-,double-,and triple-layer materials,respectively.A significant parameter that is not considered in similar studies is the gamma ray albedo.In the EJUSTCO code,the total number and energy albedos have been computed.The results are compared with those of MCNP,FOTELP,and PENELOPE.In general,the EJUSTCO-developed code can be employed to assess the performance of radiation shielding materials because the validation results are consistent with theoretical,experimental,and literary results.展开更多
Grand canonical Monte Carlo simulation(GCMCs)is utilized for studying hydrogen storage gravimetric density by pha-graphene at different metal densities,temperatures and pressures.It is demonstrated that the optimum ad...Grand canonical Monte Carlo simulation(GCMCs)is utilized for studying hydrogen storage gravimetric density by pha-graphene at different metal densities,temperatures and pressures.It is demonstrated that the optimum adsorbent location for Li atoms is the center of the seven-membered ring of pha-graphene.The binding energy of Li-decorated phagraphene is larger than the cohesive energy of Li atoms,implying that Li can be distributed on the surface of pha-graphene without forming metal clusters.We fitted the force field parameters of Li and C atoms at different positions and performed GCMCs to study the absorption capacity of H_(2).The capacity of hydrogen storage was studied by the differing density of Li decoration.The maximum hydrogen storage capacity of 4Li-decorated pha-graphene was 15.88 wt%at 77 K and100 bar.The enthalpy values of adsorption at the three densities are in the ideal range of 15 kJ·mol^(-1)-25 kJ·mol^(-1).The GCMC results at different pressures and temperatures show that with the increase in Li decorative density,the hydrogen storage gravimetric ratio of pha-graphene decreases but can reach the 2025 US Department of Energy's standard(5.5 wt%).Therefore,pha-graphene is considered to be a potential hydrogen storage material.展开更多
The Monte Carlo simulators with the three valley model and the full band Monte Carlo model are used to explore electron transport in bulk wurtzite gallium nitride (GaN).Comparison of the results based on the two mode...The Monte Carlo simulators with the three valley model and the full band Monte Carlo model are used to explore electron transport in bulk wurtzite gallium nitride (GaN).Comparison of the results based on the two models is made.The results based on both models are basically the same at the lower field region,but exhibit some differences at the higher field region.The electron average energy exhibits obvious difference at the high field region between the two models.This difference further causes several other differences of GaN properties,such as the drift velocity versus field characteristics,the repopulation.Because of the complicated energy band structures at the high energy region for wurtzite GaN,the analytical band structures in the three valley model can not cover all properties of the band structures of wurtzite GaN,so the results based on the full band Monte Carlo model should be more exact.展开更多
The Very Large Area gamma-ray Space Telescope(VLAST)is a mission concept proposed to detect gamma-ray photons through both Compton scattering and electron–positron pair production mechanisms,thus enabling the detecti...The Very Large Area gamma-ray Space Telescope(VLAST)is a mission concept proposed to detect gamma-ray photons through both Compton scattering and electron–positron pair production mechanisms,thus enabling the detection of photons with energies ranging from MeV to TeV.This project aims to conduct a comprehensive survey of the gamma-ray sky from a low-Earth orbit using an anti-coincidence detector,a tracker detector that also serves as a low-energy calorimeter,and a high-energy imaging calorimeter.We developed a Monte Carlo simulation application of the detector using the GEANT4 toolkit to evaluate the instrument performance,including the effective area,angular resolution,and energy resolution,and explored specific optimizations of the detector configuration.Our simulation-based analysis indicates that the current design of the VLAST is physically feasible,with an acceptance above 10 m^(2)sr which is four times larger than that of the Fermi-LAT,an energy resolution better than 2%at 10 GeV,and an angular resolution better than 0.2◦at 10 GeV.The VLAST project promises to make significant contributions to the field of gamma-ray astronomy and enhance our understanding of the cosmos.展开更多
Cosmic-ray muons are highly penetrating background-radiation particles found in natural environments.In this study,we develop and test a plastic scintillator muon detector based on machine-learning algorithms.The dete...Cosmic-ray muons are highly penetrating background-radiation particles found in natural environments.In this study,we develop and test a plastic scintillator muon detector based on machine-learning algorithms.The detector underwent muon position-resolution tests at the Institute of Modern Physics in Lanzhou using a multiwire drift chamber(MWDC)experimental platform.In the simulation,the same structural and performance parameters were maintained to ensure the reliability of the simulation results.The Gaussian process regression(GPR)algorithm was used as the position-reconstruction algorithm owing to its optimal performance.The results of the Time Difference of Arrival algorithm were incorporated as one of the features of the GPR model to reconstruct the muon hit positions.The accuracy of the position reconstruction was evaluated by comparing the experimental results with Geant4 simulation results.In the simulation,large-area plastic scintillator detectors achieved a position resolution better than 20 mm.In the experimental-platform tests,the position resolutions of the test detectors were 27.9 mm.We also analyzed factors affecting the position resolution,including the critical angle of the total internal reflection of the photomultiplier tubes and distribution of muons in the MWDC.Simulations were performed to image both large objects and objects with different atomic numbers.The results showed that the system could image high-and low-Z materials in the constructed model and distinguish objects with significant density differences.This study demonstrates the feasibility of the proposed system,thereby providing a new detector system for muon-imaging applications.展开更多
Bipolar junction transistors(BJTs) are often used in spacecraft due to their excellent working characteristics. However,the complex space radiation environment induces primary knock-on atoms(PKAs) in BJTs through coll...Bipolar junction transistors(BJTs) are often used in spacecraft due to their excellent working characteristics. However,the complex space radiation environment induces primary knock-on atoms(PKAs) in BJTs through collisions, resulting in hard-to-recover displacement damage and affecting the performance of electronic components. In this paper, the properties of PKAs induced by typical space heavy ions(C, N, O, Fe) in BJTs are investigated using Monte Carlo simulations. The simulated results show that the energy spectrum of ion-induced PKAs is primarily concentrated in the low-energy range(17eV–100eV) and displays similar features across all tested ions. The PKAs induced by the collision of energetic ions have large forward scattering angles, mainly around 88°. Moreover, the distribution of PKAs within a transistor as a function of depth displays a peak characteristic, and the peak position is linearly proportional to the incident energy at a certain energy range. These simulation outcomes serve as crucial theoretical support for long-term semiconductor material defect evolution and ground testing of semiconductor devices.展开更多
An appropriate Monte Carlo method was developed to simulate the three-dimensional normal grain growth more completely. Comparative investigation on the three-dimensional and the cross-sectional characteristics of norm...An appropriate Monte Carlo method was developed to simulate the three-dimensional normal grain growth more completely. Comparative investigation on the three-dimensional and the cross-sectional characteristics of normal grain growth was done. It was found that the time exponent of grain growth determined from cross-section exhibits the same rule of increasing slowly with time and approaching the theoretical value n = 0.5 of steadygrain growth as the three-dimensional (3-D) system. From change of the number of grains per unit area with timemeasured in cross-section, the state of 3-D normal grain growth may be predicted. The gtain size distribution incross-section is different from that in 3-D system and can not express the evolution characteristic of the 3-D distribution. Furthermore, there exists statistical connection between the topological parameters in cross-section and thosein three-dimensions.展开更多
Three-dimensional normal grain growth was appropriately simulated using a Potts model Monte Carlo algorithm. The quasi-stationary grain size distribution obtained from simulation agreed well with the experimental resu...Three-dimensional normal grain growth was appropriately simulated using a Potts model Monte Carlo algorithm. The quasi-stationary grain size distribution obtained from simulation agreed well with the experimental result of pure iron. The Weibull function with a parameter β=2.77 and the Yu-Liu function with a parameter v =2.71 fit the quasi-stationary grain size distribution well. The grain volume distribution is a function that decreased exponentially with increasing grain volume. The distribution of boundary area of grains has a peak at S/〈S〉=0.5, where S is the boundary area of a grain and 〈S〉 is the mean boundary area of all grains in the system. The lognormal function fits the face number distribution well and the peak of the face number distribution is f=10. The mean radius off-faced grains is not proportional to the face number, but appears to be related by a curve convex upward. In the 2D cross-section, both the perimeter law and the Aboav-Weaire law are observed to hold.展开更多
We benchmark and analyze the error of energy conservation (EC) scheme in particle-in-cell/Monte Carlo (PIC/MC) algorithms by simulating the radio frequency discharge. The plasma heating behaviors and electron dist...We benchmark and analyze the error of energy conservation (EC) scheme in particle-in-cell/Monte Carlo (PIC/MC) algorithms by simulating the radio frequency discharge. The plasma heating behaviors and electron distributing functions obtained by one-dimensional (1D) simulation are analyzed. Both explicit and implicit algorithms are checked. The results showed that the EC scheme can eliminated the self-heating with wide grid spacing in both cases with a small reduction of the accuracies. In typical parameters, the EC implicit scheme has higher precision than EC explicit scheme. Some "numerical cooling" behaviors are observed and analyzed. Some other errors are also analyzed. The analysis showed that the EC implicit scheme can be used to qualitative estimation of some discharge problems with much less computational resource cost without much loss of accuracies.展开更多
In public health,simulation modeling stands as an invaluable asset,enabling the evaluation of new systems without their physical implementation,experimentation with existing systems without operational adjustments,and...In public health,simulation modeling stands as an invaluable asset,enabling the evaluation of new systems without their physical implementation,experimentation with existing systems without operational adjustments,and testing system limits without real-world repercussions.In simulation modeling,the Monte Carlo method emerges as a powerful yet underutilized tool.Although the Monte Carlo method has not yet gained widespread prominence in healthcare,its technological capabilities hold promise for substantial cost reduction and risk mitigation.In this review article,we aimed to explore the transformative potential of the Monte Carlo method in healthcare contexts.We underscore the significance of experiential insights derived from simulated experimentation,especially in resource-constrained scenarios where time,financial constraints,and limited resources necessitate innovative and efficient approaches.As public health faces increasing challenges,incorporating the Monte Carlo method presents an opportunity for enhanced system construction,analysis,and evaluation.展开更多
文摘The maintenance of safety and dependability in rail and road embankments is of utmost importance in order to facilitate the smooth operation of transportation networks.This study introduces a comprehensive methodology for soil slope stability evaluation,employing Monte Carlo Simulation(MCS)and Subset Simulation(SS)with the"UPSS 3.0 Add-in"in MS-Excel.Focused on an 11.693-meter embankment with a soil slope(inclination ratio of 2H:1V),the investigation considers earthquake coefficients(kh)and pore water pressure ratios(ru)following Indian zoning requirements.The chance of slope failure showed a considerable increase as the Coefficient of Variation(COV),seismic coefficients(kh),and pore water pressure ratios(ru)experienced an escalation.The SS approach showed exceptional efficacy in calculating odds of failure that are notably low.Within computational modeling,the study optimized the worst-case scenario using ANFIS-GA,ANFIS-GWO,ANFIS-PSO,and ANFIS-BBO models.The ANFIS-PSO model exhibits exceptional accuracy(training R2=0.9011,RMSE=0.0549;testing R2=0.8968,RMSE=0.0615),emerging as the most promising.This study highlights the significance of conducting thorough risk assessments and offers practical insights into evaluating and improving the stability of soil slopes in transportation infrastructure.These findings contribute to the enhancement of safety and reliability in real-world situations.
文摘The effect of spin-1 impurities doping on the magnetic properties of a spin-3/2 Ising nanotube is investigated using Monte Carlo simulations within the Blume-Emery-Griffiths model in the presence of an external magnetic field. The thermal behaviors of the order parameters and different macroscopic instabilities as well as the hysteretic behavior of the material are examined in great detail as a function of the dopant density. It is found that the impurities concentration affects all the system magnetic properties generating for some specific values, compensation points and multi-cycle hysteresis. Doping conditions where the saturation/remanent magnetization and coercive field of the investigated material can be modified for permanent or soft magnets synthesis purpose are discussed.
基金funded by the Chinese Academy of Medical Science health innovation project(grant nos.2021-I2M-1-042,2021-I2M-1-058,and 2022-I2M-C&T-A-005)Tianjin Outstanding Youth Fund Project(grant no.20JCJQIC00230)CAMS Innovation Fund for Medical Sciences(CIFMS)(grant no.2022-I2M-C&T-B-012).
文摘Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes delineated by explicit optical characteristics,Monte Carlo simulations possess the theoretical capacity to render unparalleled accuracy in the depiction of exceedingly intricate phenomena.Nonetheless,the quintessential challenge associated with Monte Carlo simulation methodologies resides in their extended computational duration,which significantly impedes the refinement of their precision.Consequently,this discourse is specifically dedicated to exploring innovations in strategies and technologies aimed at expediting Monte Carlo simulations.It delves into the foundational concepts of various acceleration tactics,evaluates these strategies concerning their speed,accuracy,and practicality,and amalgamates a comprehensive overview and critique of acceleration methodologies for Monte Carlo simulations.Ultimately,the discourse envisages prospective trajectories for the employment of Monte Carlo techniques within the domain of tissue optics.
基金supported by Project of Chongqing Science and Technology Bureau (cstc2022jxjl0005)。
文摘This study aimed to investigate the pollution characteristics, source apportionment, and health risks associated with trace metal(loid)s(TMs) in the major agricultural producing areas in Chongqing, China. We analyzed the source apportionment and assessed the health risk of TMs in agricultural soils by using positive matrix factorization(PMF) model and health risk assessment(HRA) model based on Monte Carlo simulation. Meanwhile, we combined PMF and HRA models to explore the health risks of TMs in agricultural soils by different pollution sources to determine the priority control factors. Results showed that the average contents of cadmium(Cd), arsenic (As), lead(Pb), chromium(Cr), copper(Cu), nickel(Ni), and zinc(Zn) in the soil were found to be 0.26, 5.93, 27.14, 61.32, 23.81, 32.45, and 78.65 mg/kg, respectively. Spatial analysis and source apportionment analysis revealed that urban and industrial sources, agricultural sources, and natural sources accounted for 33.0%, 27.7%, and 39.3% of TM accumulation in the soil, respectively. In the HRA model based on Monte Carlo simulation, noncarcinogenic risks were deemed negligible(hazard index <1), the carcinogenic risks were at acceptable level(10^(-6)<total carcinogenic risk ≤ 10^(-4)), with higher risks observed for children compared to adults. The relationship between TMs, their sources, and health risks indicated that urban and industrial sources were primarily associated with As, contributing to 75.1% of carcinogenic risks and 55.7% of non-carcinogenic risks, making them the primary control factors. Meanwhile, agricultural sources were primarily linked to Cd and Pb, contributing to 13.1% of carcinogenic risks and 21.8% of non-carcinogenic risks, designating them as secondary control factors.
基金Key Research and Development Program of Guangdong Province (No.2020B0101130009)
文摘Registrations based on the manual placement of spherical targets are still being employed by many professionals in the industry.However,the placement of those targets usually relies solely on personal experience without scientific evidence supported by numerical analysis.This paper presents a comprehensive investigation,based on Monte Carlo simulation,into determining the optimal number and positions for efficient target placement in typical scenes consisting of a pair of facades.It demonstrates new check-up statistical rules and geometrical constraints that can effectively extract and analyze massive simulations of unregistered point clouds and their corresponding registrations.More than 6×10^(7) sets of the registrations were simulated,whereas more than IOO registrations with real data were used to verify the results of simulation.The results indicated that using five spherical targets is the best choice for the registration of a large typical registration site consisting of two vertical facades and a ground,when there is only a box set of spherical targets available.As a result,the users can avoid placing extra targets to achieve insignificant improvements in registration accuracy.The results also suggest that the higher registration accuracy can be obtained when the ratio between the facade-to-target distance and target-to-scanner distance is approximately 3:2.Therefore,the targets should be placed closer to the scanner rather than in the middle between the facades and the scanner,contradicting to the traditional thought. Besides,the results reveal that the accuracy can be increased by setting the largest projected triangular area of the targets to be large.
基金supported by the CAEP Found (No.CX20200028)Youth Program of National Natural Science Foundation of China (No.11705011).
文摘When multiphysics coupling calculations contain time-dependent Monte Carlo particle transport simulations, these simulations often account for the largest part of the calculation time, which is insufferable in certain important cases. This study proposes an adaptive strategy for automatically adjusting the sample size to fulfil more reasonable simulations. This is realized based on an extension of the Shannon entropy concept and is essentially different from the popular methods in timeindependent Monte Carlo particle transport simulations, such as controlling the sample size according to the relative error of a target tally or by experience. The results of the two models show that this strategy can yield almost similar results while significantly reducing the calculation time. Considering the efficiency, the sample size should not be increased blindly if the efficiency cannot be enhanced further. The strategy proposed herein satisfies this requirement.
基金Our profound gratitude and appreciation go to the Egyptian and Japanese governments for supporting and financing this research work at the Egypt-Japan University of Science and TechnologyFurther appreciation goes to the Science and Technology Development Fund for the additional financial support(project ID:STDF-33397).
文摘Gamma ray shielding is essential to ensure the safety of personnel and equipment in facilities and environments where radiation exists.The Monte Carlo technique is vital for analyzing the gamma-ray shielding capabilities of materials.In this study,a simple Monte Carlo code,EJUSTCO,is developed to cd simulate gamma radiation transport in shielding materials for academic purposes.The code considers the photoelectric effect,Compton(incoherent)scattering,pair production,and photon annihilation as the dominant interaction mechanisms in the gamma radiation shielding problem.Variance reduction techniques,such as the Russian roulette,survival weighting,and exponential transformation,are incorporated into the code to improve computational efficiency.Predicting the exponential transformation parameter typically requires trial and error as well as expertise.Herein,a deep learning neural network is proposed as a viable method for predicting this parameter for the first time.The model achieves an MSE of 0.00076752 and an R-value of 0.99998.The exposure buildup factors and radiation dose rates due to the passage of gamma radiation with different source energies and varying thicknesses of lead,water,iron,concrete,and aluminum in single-,double-,and triple-layer material systems are validated by comparing the results with those of MCNP,ESG,ANS-6.4.3,MCBLD,MONTEREY MARK(M),PENELOPE,and experiments.Average errors of 5.6%,2.75%,and 10%are achieved for the exposure buildup factor in single-,double-,and triple-layer materials,respectively.A significant parameter that is not considered in similar studies is the gamma ray albedo.In the EJUSTCO code,the total number and energy albedos have been computed.The results are compared with those of MCNP,FOTELP,and PENELOPE.In general,the EJUSTCO-developed code can be employed to assess the performance of radiation shielding materials because the validation results are consistent with theoretical,experimental,and literary results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11904175,11804169,and 11804165)the Graduate Innovation Project of Jiangsu Province,China(Grant No.KYCX210700)。
文摘Grand canonical Monte Carlo simulation(GCMCs)is utilized for studying hydrogen storage gravimetric density by pha-graphene at different metal densities,temperatures and pressures.It is demonstrated that the optimum adsorbent location for Li atoms is the center of the seven-membered ring of pha-graphene.The binding energy of Li-decorated phagraphene is larger than the cohesive energy of Li atoms,implying that Li can be distributed on the surface of pha-graphene without forming metal clusters.We fitted the force field parameters of Li and C atoms at different positions and performed GCMCs to study the absorption capacity of H_(2).The capacity of hydrogen storage was studied by the differing density of Li decoration.The maximum hydrogen storage capacity of 4Li-decorated pha-graphene was 15.88 wt%at 77 K and100 bar.The enthalpy values of adsorption at the three densities are in the ideal range of 15 kJ·mol^(-1)-25 kJ·mol^(-1).The GCMC results at different pressures and temperatures show that with the increase in Li decorative density,the hydrogen storage gravimetric ratio of pha-graphene decreases but can reach the 2025 US Department of Energy's standard(5.5 wt%).Therefore,pha-graphene is considered to be a potential hydrogen storage material.
文摘The Monte Carlo simulators with the three valley model and the full band Monte Carlo model are used to explore electron transport in bulk wurtzite gallium nitride (GaN).Comparison of the results based on the two models is made.The results based on both models are basically the same at the lower field region,but exhibit some differences at the higher field region.The electron average energy exhibits obvious difference at the high field region between the two models.This difference further causes several other differences of GaN properties,such as the drift velocity versus field characteristics,the repopulation.Because of the complicated energy band structures at the high energy region for wurtzite GaN,the analytical band structures in the three valley model can not cover all properties of the band structures of wurtzite GaN,so the results based on the full band Monte Carlo model should be more exact.
基金supported by the National Key Research and Development Program of China(No.2021YFA0718404)the National Natural Science Foundation of China(Nos.12220101003,12173098,U2031149)+2 种基金the Project for Young Scientists in Basic Research of Chinese Academy of Sciences(CAS)(No.YSBR-061)the Scientific Instrument Developing Project of CAS(No.GJJSTD20210009)the Youth Innovation Promotion Association of CAS,and the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(No.YESS20220197).
文摘The Very Large Area gamma-ray Space Telescope(VLAST)is a mission concept proposed to detect gamma-ray photons through both Compton scattering and electron–positron pair production mechanisms,thus enabling the detection of photons with energies ranging from MeV to TeV.This project aims to conduct a comprehensive survey of the gamma-ray sky from a low-Earth orbit using an anti-coincidence detector,a tracker detector that also serves as a low-energy calorimeter,and a high-energy imaging calorimeter.We developed a Monte Carlo simulation application of the detector using the GEANT4 toolkit to evaluate the instrument performance,including the effective area,angular resolution,and energy resolution,and explored specific optimizations of the detector configuration.Our simulation-based analysis indicates that the current design of the VLAST is physically feasible,with an acceptance above 10 m^(2)sr which is four times larger than that of the Fermi-LAT,an energy resolution better than 2%at 10 GeV,and an angular resolution better than 0.2◦at 10 GeV.The VLAST project promises to make significant contributions to the field of gamma-ray astronomy and enhance our understanding of the cosmos.
基金supported by the National Natural Science Foundation of China(Nos.12275120,11875163)Ministry of Science and Technology of China(No.2020YFE0202001)+1 种基金Science and Technology Innovation Program of Hunan Province(No.2022RC1202)Hunan Provincial Natural Science Foundation(No.2021JJ20006).
文摘Cosmic-ray muons are highly penetrating background-radiation particles found in natural environments.In this study,we develop and test a plastic scintillator muon detector based on machine-learning algorithms.The detector underwent muon position-resolution tests at the Institute of Modern Physics in Lanzhou using a multiwire drift chamber(MWDC)experimental platform.In the simulation,the same structural and performance parameters were maintained to ensure the reliability of the simulation results.The Gaussian process regression(GPR)algorithm was used as the position-reconstruction algorithm owing to its optimal performance.The results of the Time Difference of Arrival algorithm were incorporated as one of the features of the GPR model to reconstruct the muon hit positions.The accuracy of the position reconstruction was evaluated by comparing the experimental results with Geant4 simulation results.In the simulation,large-area plastic scintillator detectors achieved a position resolution better than 20 mm.In the experimental-platform tests,the position resolutions of the test detectors were 27.9 mm.We also analyzed factors affecting the position resolution,including the critical angle of the total internal reflection of the photomultiplier tubes and distribution of muons in the MWDC.Simulations were performed to image both large objects and objects with different atomic numbers.The results showed that the system could image high-and low-Z materials in the constructed model and distinguish objects with significant density differences.This study demonstrates the feasibility of the proposed system,thereby providing a new detector system for muon-imaging applications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11974091,51973046,U22B2044,and 21673025)the Open Projects of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Grant No.SKLIPR2020)。
文摘Bipolar junction transistors(BJTs) are often used in spacecraft due to their excellent working characteristics. However,the complex space radiation environment induces primary knock-on atoms(PKAs) in BJTs through collisions, resulting in hard-to-recover displacement damage and affecting the performance of electronic components. In this paper, the properties of PKAs induced by typical space heavy ions(C, N, O, Fe) in BJTs are investigated using Monte Carlo simulations. The simulated results show that the energy spectrum of ion-induced PKAs is primarily concentrated in the low-energy range(17eV–100eV) and displays similar features across all tested ions. The PKAs induced by the collision of energetic ions have large forward scattering angles, mainly around 88°. Moreover, the distribution of PKAs within a transistor as a function of depth displays a peak characteristic, and the peak position is linearly proportional to the incident energy at a certain energy range. These simulation outcomes serve as crucial theoretical support for long-term semiconductor material defect evolution and ground testing of semiconductor devices.
文摘An appropriate Monte Carlo method was developed to simulate the three-dimensional normal grain growth more completely. Comparative investigation on the three-dimensional and the cross-sectional characteristics of normal grain growth was done. It was found that the time exponent of grain growth determined from cross-section exhibits the same rule of increasing slowly with time and approaching the theoretical value n = 0.5 of steadygrain growth as the three-dimensional (3-D) system. From change of the number of grains per unit area with timemeasured in cross-section, the state of 3-D normal grain growth may be predicted. The gtain size distribution incross-section is different from that in 3-D system and can not express the evolution characteristic of the 3-D distribution. Furthermore, there exists statistical connection between the topological parameters in cross-section and thosein three-dimensions.
基金supported by the National Natural Science Foundation of China (No.50671010)
文摘Three-dimensional normal grain growth was appropriately simulated using a Potts model Monte Carlo algorithm. The quasi-stationary grain size distribution obtained from simulation agreed well with the experimental result of pure iron. The Weibull function with a parameter β=2.77 and the Yu-Liu function with a parameter v =2.71 fit the quasi-stationary grain size distribution well. The grain volume distribution is a function that decreased exponentially with increasing grain volume. The distribution of boundary area of grains has a peak at S/〈S〉=0.5, where S is the boundary area of a grain and 〈S〉 is the mean boundary area of all grains in the system. The lognormal function fits the face number distribution well and the peak of the face number distribution is f=10. The mean radius off-faced grains is not proportional to the face number, but appears to be related by a curve convex upward. In the 2D cross-section, both the perimeter law and the Aboav-Weaire law are observed to hold.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11275007,11105057,11175023,and 11275039)the Program for Liaoning Excellent Talents in University,China(Grant No.LJQ2012098)
文摘We benchmark and analyze the error of energy conservation (EC) scheme in particle-in-cell/Monte Carlo (PIC/MC) algorithms by simulating the radio frequency discharge. The plasma heating behaviors and electron distributing functions obtained by one-dimensional (1D) simulation are analyzed. Both explicit and implicit algorithms are checked. The results showed that the EC scheme can eliminated the self-heating with wide grid spacing in both cases with a small reduction of the accuracies. In typical parameters, the EC implicit scheme has higher precision than EC explicit scheme. Some "numerical cooling" behaviors are observed and analyzed. Some other errors are also analyzed. The analysis showed that the EC implicit scheme can be used to qualitative estimation of some discharge problems with much less computational resource cost without much loss of accuracies.
基金Supported by the European Union-NextGenerationEU,through the National Recovery and Resilience Plan of the Republic of Bulgaria,No.BG-RRP-2.004-0008.
文摘In public health,simulation modeling stands as an invaluable asset,enabling the evaluation of new systems without their physical implementation,experimentation with existing systems without operational adjustments,and testing system limits without real-world repercussions.In simulation modeling,the Monte Carlo method emerges as a powerful yet underutilized tool.Although the Monte Carlo method has not yet gained widespread prominence in healthcare,its technological capabilities hold promise for substantial cost reduction and risk mitigation.In this review article,we aimed to explore the transformative potential of the Monte Carlo method in healthcare contexts.We underscore the significance of experiential insights derived from simulated experimentation,especially in resource-constrained scenarios where time,financial constraints,and limited resources necessitate innovative and efficient approaches.As public health faces increasing challenges,incorporating the Monte Carlo method presents an opportunity for enhanced system construction,analysis,and evaluation.