To improve the reliability and accuracy of visual tracker,a robust visual tracking algorithm based on multi-cues fusion under Bayesian framework is proposed.The weighed color and texture cues of the object are applied...To improve the reliability and accuracy of visual tracker,a robust visual tracking algorithm based on multi-cues fusion under Bayesian framework is proposed.The weighed color and texture cues of the object are applied to describe the moving object.An adjustable observation model is incorporated into particle filtering,which utilizes the properties of particle filter for coping with non-linear,non-Gaussian assumption and the ability to predict the position of the moving object in a cluttered environment and two complementary attributes are employed to estimate the matching similarity dynamically in term of the likelihood ratio factors;furthermore tunes the weight values according to the confidence map of the color and texture feature on-line adaptively to reconfigure the optimal observation likelihood model,which ensured attaining the maximum likelihood ratio in the tracking scenario even if in the situations where the object is occluded or illumination,pose and scale are time-variant.The experimental result shows that the algorithm can track a moving object accurately while the reliability of tracking in a challenging case is validated in the experimentation.展开更多
Nanograined(NG)materials often suffer from low thermal stability owing to the high volume fraction of grain boundaries(GBs).Herein,we investigate the possibility of utilizing local chemical ordering(LCO)for improving ...Nanograined(NG)materials often suffer from low thermal stability owing to the high volume fraction of grain boundaries(GBs).Herein,we investigate the possibility of utilizing local chemical ordering(LCO)for improving the thermal stability of NG FeCoNiCrMn highentropy alloys(HE As).NG HE As with two different grain sizes were considered.Tensile tests and creep test simulations were then performed to reveal the influence of LCO on the mechanical properties and thermal stability of NG HE As.After performing hybrid molecular dynamics and Monte Carlo simulations,Cr atoms were found to accumulate at GBs.By analyzing the atomic structure evolution during the deformation process,we found that the formation of LCO effectively stabilized the GBs and inhibited GB movement.In addition,dislocation nucleation from GBs and dislocation movement was also hindered.The inhibiting effect of LCO on GB movement and dislocation activity is more prominent than in the NG model with smaller grain sizes.The current simulation results suggest a possible strategy for enhancing the thermal stability of NG HEAs for service in a high-temperature environment.展开更多
Urban electricity and heat networks(UEHN)consist of the coupling and interactions between electric power systems and district heating systems,in which the geographical and functional features of integrated energy syst...Urban electricity and heat networks(UEHN)consist of the coupling and interactions between electric power systems and district heating systems,in which the geographical and functional features of integrated energy systems are demonstrated.UEHN have been expected to provide an effective way to accommodate the intermittent and unpredictable renewable energy sources,in which the application of stochastic optimization approaches to UEHN analysis is highly desired.In this paper,we propose a chance-constrained coordinated optimization approach for UEHN considering the uncertainties in electricity loads,heat loads,and photovoltaic outputs,as well as the correlations between these uncertain sources.A solution strategy,which combines the Latin Hypercube Sampling Monte Carlo Simulation(LHSMCS)approach and a heuristic algorithm,is specifically designed to deal with the proposed chance-constrained coordinated optimization.Finally,test results on an UEHN comprised of a modified IEEE 33-bus system and a 32-node district heating system at Barry Island have verified the feasibility and effectiveness of the proposed framework.展开更多
文摘To improve the reliability and accuracy of visual tracker,a robust visual tracking algorithm based on multi-cues fusion under Bayesian framework is proposed.The weighed color and texture cues of the object are applied to describe the moving object.An adjustable observation model is incorporated into particle filtering,which utilizes the properties of particle filter for coping with non-linear,non-Gaussian assumption and the ability to predict the position of the moving object in a cluttered environment and two complementary attributes are employed to estimate the matching similarity dynamically in term of the likelihood ratio factors;furthermore tunes the weight values according to the confidence map of the color and texture feature on-line adaptively to reconfigure the optimal observation likelihood model,which ensured attaining the maximum likelihood ratio in the tracking scenario even if in the situations where the object is occluded or illumination,pose and scale are time-variant.The experimental result shows that the algorithm can track a moving object accurately while the reliability of tracking in a challenging case is validated in the experimentation.
基金financially supported by the National Natural Science Foundation of China(Nos.52101019,52071023,51901013,52122408)the financial support from the Fundamental Research Funds for theCentral Universities(University of Science and Technology Beijing,Nos.FRF-TP-2021-04C1,06500135)supported by USTB MatCom of Beijing Advanced Innovation Center for Materials Genome Engineering。
文摘Nanograined(NG)materials often suffer from low thermal stability owing to the high volume fraction of grain boundaries(GBs).Herein,we investigate the possibility of utilizing local chemical ordering(LCO)for improving the thermal stability of NG FeCoNiCrMn highentropy alloys(HE As).NG HE As with two different grain sizes were considered.Tensile tests and creep test simulations were then performed to reveal the influence of LCO on the mechanical properties and thermal stability of NG HE As.After performing hybrid molecular dynamics and Monte Carlo simulations,Cr atoms were found to accumulate at GBs.By analyzing the atomic structure evolution during the deformation process,we found that the formation of LCO effectively stabilized the GBs and inhibited GB movement.In addition,dislocation nucleation from GBs and dislocation movement was also hindered.The inhibiting effect of LCO on GB movement and dislocation activity is more prominent than in the NG model with smaller grain sizes.The current simulation results suggest a possible strategy for enhancing the thermal stability of NG HEAs for service in a high-temperature environment.
基金This work was supported in part by Natural Science Foundation of Jiangsu Province,China(No.BK20171433)in part by Science and Technology Project of State Grid Jiangsu Electric Power Corporation,China(No.J2018066).
文摘Urban electricity and heat networks(UEHN)consist of the coupling and interactions between electric power systems and district heating systems,in which the geographical and functional features of integrated energy systems are demonstrated.UEHN have been expected to provide an effective way to accommodate the intermittent and unpredictable renewable energy sources,in which the application of stochastic optimization approaches to UEHN analysis is highly desired.In this paper,we propose a chance-constrained coordinated optimization approach for UEHN considering the uncertainties in electricity loads,heat loads,and photovoltaic outputs,as well as the correlations between these uncertain sources.A solution strategy,which combines the Latin Hypercube Sampling Monte Carlo Simulation(LHSMCS)approach and a heuristic algorithm,is specifically designed to deal with the proposed chance-constrained coordinated optimization.Finally,test results on an UEHN comprised of a modified IEEE 33-bus system and a 32-node district heating system at Barry Island have verified the feasibility and effectiveness of the proposed framework.