期刊文献+
共找到248篇文章
< 1 2 13 >
每页显示 20 50 100
Neural network analytic continuation for Monte Carlo:Improvement by statistical errors
1
作者 孙恺伟 王垡 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期156-170,共15页
This study explores the use of neural network-based analytic continuation to extract spectra from Monte Carlo data.We apply this technique to both synthetic and Monte Carlo-generated data.The training sets for neural ... This study explores the use of neural network-based analytic continuation to extract spectra from Monte Carlo data.We apply this technique to both synthetic and Monte Carlo-generated data.The training sets for neural networks are carefully synthesized without“data leakage”.We find that the training set should match the input correlation functions in terms of statistical error properties,such as noise level,noise dependence on imaginary time,and imaginary time-displaced correlations.We have developed a systematic method to synthesize such training datasets.Our improved algorithm outperforms the widely used maximum entropy method in highly noisy situations.As an example,our method successfully extracted the dynamic structure factor of the spin-1/2 Heisenberg chain from quantum Monte Carlo simulations. 展开更多
关键词 neural network analytic continuation quantum monte Carlo
下载PDF
A neural network solution of first-passage problems
2
作者 Jiamin QIAN Lincong CHEN J.Q.SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第11期2023-2036,共14页
This paper proposes a novel method for solving the first-passage time probability problem of nonlinear stochastic dynamic systems.The safe domain boundary is exactly imposed into the radial basis function neural netwo... This paper proposes a novel method for solving the first-passage time probability problem of nonlinear stochastic dynamic systems.The safe domain boundary is exactly imposed into the radial basis function neural network(RBF-NN)architecture such that the solution is an admissible function of the boundary-value problem.In this way,the neural network solution can automatically satisfy the safe domain boundaries and no longer requires adding the corresponding loss terms,thus efficiently handling structure failure problems defined by various safe domain boundaries.The effectiveness of the proposed method is demonstrated through three nonlinear stochastic examples defined by different safe domains,and the results are validated against the extensive Monte Carlo simulations(MCSs). 展开更多
关键词 first-passage time probability nonlinear stochastic dynamic system radial basis function neural network(RBF-NN) safe domain boundary monte Carlo simulation(MCS)
下载PDF
Application of Artificial Neural Networks Based Monte Carlo Simulation in the Expert System Design and Control of Crude Oil Distillation Column of a Nigerian Refinery
3
作者 Lekan T. Popoola Alfred A. Susu 《Advances in Chemical Engineering and Science》 2014年第2期266-283,共18页
This research work investigated comparative studies of expert system design and control of crude oil distillation column (CODC) using artificial neural networks based Monte Carlo (ANNBMC) simulation of random processe... This research work investigated comparative studies of expert system design and control of crude oil distillation column (CODC) using artificial neural networks based Monte Carlo (ANNBMC) simulation of random processes and artificial neural networks (ANN) model which were validated using experimental data obtained from functioning crude oil distillation column of Port-Harcourt Refinery, Nigeria by MATLAB computer program. Ninety percent (90%) of the experimental data sets were used for training while ten percent (10%) were used for testing the networks. The maximum relative errors between the experimental and calculated data obtained from the output variables of the neural network for CODC design were 1.98 error % and 0.57 error % when ANN only and ANNBMC were used respectively while their respective values for the maximum relative error were 0.346 error % and 0.124 error % when they were used for the controller prediction. Larger number of iteration steps of below 2500 and 5000 were required to achieve convergence of less than 10-7?for the training error using ANNBMC for both the design of the CODC and controller respectively while less than 400 and 700 iteration steps were needed to achieve convergence of 10-4?using ANN only. The linear regression analysis performed revealed the minimum and maximum prediction accuracies to be 80.65% and 98.79%;and 98.38% and 99.98% when ANN and ANNBMC were used for the CODC design respectively. Also, the minimum and maximum prediction accuracies were 92.83% and 99.34%;and 98.89% and 99.71% when ANN and ANNBMC were used for the CODC controller respectively as both methodologies have excellent predictions. Hence, artificial neural networks based Monte Carlo simulation is an effective and better tool for the design and control of crude oil distillation column. 展开更多
关键词 NEURON monte Carlo Simulation CRUDE Oil DISTILLATION Column Artificial neural networks Architecture REFINERY Design Control
下载PDF
基于Monte Carlo-BP神经网络TBM掘进速度预测 被引量:23
4
作者 温森 赵延喜 杨圣奇 《岩土力学》 EI CAS CSCD 北大核心 2009年第10期3127-3132,共6页
预测隧道工程中TBM掘进速度,主要有完全经验的、半理论半经验的模型和人工智能等方法,所用参数均为确定性的,未考虑参数存在的随机性,故导致预测结果的不准确性。基于此,提出了Monte Carlo-BP神经网络TBM掘进速度预测模型,着重考虑了一... 预测隧道工程中TBM掘进速度,主要有完全经验的、半理论半经验的模型和人工智能等方法,所用参数均为确定性的,未考虑参数存在的随机性,故导致预测结果的不准确性。基于此,提出了Monte Carlo-BP神经网络TBM掘进速度预测模型,着重考虑了一些重要输入参数的随机性,其中输入参数重要性的大小通过粗糙集进行计算排序。采用Monte Carlo产生随机数时,由于参量的样本数据的有限,分布函数均采用阶梯形经验分布函数。如果采用的数据是来自不同类型的TBM,则应当考虑机器性能参数,并重新对参数重要性进行排序。实例计算表明,Monte Carlo-BP神经网络模型预测结果和实测值总体趋势和均值比较一致。 展开更多
关键词 TBM掘进速度 monte carlo-bp神经网络 参数重要性 粗糙集
下载PDF
EJUSTCO:Monte Carlo radiation transport code hybrid with ANN model for gamma-ray shielding simulation
5
作者 Joseph Konadu Boahen Ahmed S.G.Khalil +1 位作者 Mohsen A.Hassan Samir A.Elsagheer Mohamed 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第9期155-176,共22页
Gamma ray shielding is essential to ensure the safety of personnel and equipment in facilities and environments where radiation exists.The Monte Carlo technique is vital for analyzing the gamma-ray shielding capabilit... Gamma ray shielding is essential to ensure the safety of personnel and equipment in facilities and environments where radiation exists.The Monte Carlo technique is vital for analyzing the gamma-ray shielding capabilities of materials.In this study,a simple Monte Carlo code,EJUSTCO,is developed to cd simulate gamma radiation transport in shielding materials for academic purposes.The code considers the photoelectric effect,Compton(incoherent)scattering,pair production,and photon annihilation as the dominant interaction mechanisms in the gamma radiation shielding problem.Variance reduction techniques,such as the Russian roulette,survival weighting,and exponential transformation,are incorporated into the code to improve computational efficiency.Predicting the exponential transformation parameter typically requires trial and error as well as expertise.Herein,a deep learning neural network is proposed as a viable method for predicting this parameter for the first time.The model achieves an MSE of 0.00076752 and an R-value of 0.99998.The exposure buildup factors and radiation dose rates due to the passage of gamma radiation with different source energies and varying thicknesses of lead,water,iron,concrete,and aluminum in single-,double-,and triple-layer material systems are validated by comparing the results with those of MCNP,ESG,ANS-6.4.3,MCBLD,MONTEREY MARK(M),PENELOPE,and experiments.Average errors of 5.6%,2.75%,and 10%are achieved for the exposure buildup factor in single-,double-,and triple-layer materials,respectively.A significant parameter that is not considered in similar studies is the gamma ray albedo.In the EJUSTCO code,the total number and energy albedos have been computed.The results are compared with those of MCNP,FOTELP,and PENELOPE.In general,the EJUSTCO-developed code can be employed to assess the performance of radiation shielding materials because the validation results are consistent with theoretical,experimental,and literary results. 展开更多
关键词 monte Carlo Gamma rays SHIELDING Artificial neural network SIMULATION
下载PDF
Research on inversion method for complex source-term distributions based on deep neural networks
6
作者 Yi‑Sheng Hao Zhen Wu +3 位作者 Yan‑Heng Pu Rui Qiu Hui Zhang Jun‑Li Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第12期159-176,共18页
This study proposes a source distribution inversion convolutional neural network (SDICNN), which is deep neural network model for the inversion of complex source distributions, to solve inversion problems involving fi... This study proposes a source distribution inversion convolutional neural network (SDICNN), which is deep neural network model for the inversion of complex source distributions, to solve inversion problems involving fixed-source distributions. A function is developed to obtain the distribution information of complex source terms from radiation parameters at individual sampling points in space. The SDICNN comprises two components:a fully connected network and a convolutional neural network. The fully connected network mainly extracts the parameter measurement information from the sampling points,whereas the convolutional neural network mainly completes the fine inversion of the source-term distribution. Finally, the SDICNN obtains a high-resolution source-term distribution image. In this study, the proposed source-term inversion method is evaluated based on typical geometric scenarios. The results show that, unlike the conventional fully connected neural network, the SDICNN model can extract the two-dimensional distribution features of the source terms, and its inversion results are better. In addition, the effects of the shielding mechanism and number of sampling points on the inversion process are examined. In summary, the result of this study can facilitate the accurate assessment of dose distributions in nuclear facilities. 展开更多
关键词 Source term inversion monte Carlo Artificial intelligence neural network
下载PDF
Backflow Transformation for A=3 Nuclei with Artificial Neural Networks
7
作者 YANG Yilong ZHAO Pengwei 《原子能科学技术》 EI CAS CSCD 北大核心 2023年第4期673-678,共6页
A novel variational wave function defined as a Jastrow factor multiplying a backflow transformed Slater determinant was developed for A=3 nuclei.The Jastrow factor and backflow transformation were represented by artif... A novel variational wave function defined as a Jastrow factor multiplying a backflow transformed Slater determinant was developed for A=3 nuclei.The Jastrow factor and backflow transformation were represented by artificial neural networks.With this newly developed wave function,variational Monte Carlo calculations were carried out for3H and3He nuclei starting from a nuclear Hamiltonian based on the leadingorder pionless effective field theory.The obtained ground-state energy and charge radii were successfully benchmarked against the results of the highly-accurate hypersphericalharmonics method.The backflow transformation plays a crucial role in improving the nodal surface of the Slater determinant and,thus,providing accurate ground-state energy. 展开更多
关键词 nuclear many-body problem quantum monte Carlo artificial neural network backflow transformation
下载PDF
基于神经网络-Monte Carlo法的结构系统可靠性分析
8
作者 姜封国 周玉明 +2 位作者 于正 梁爽 韩雪松 《黑龙江科技大学学报》 CAS 2023年第3期418-423,共6页
针对传统结构可靠性求解方法存在应用局限性和计算误差较大的缺陷,提出了一种基于神经网络-Monte Carlo的结构系统可靠性分析方法,利用神经网络模型预测方法降低Monte Carlo法计算结构可靠性指标的工作量,并与传统可靠性分析方法对比,... 针对传统结构可靠性求解方法存在应用局限性和计算误差较大的缺陷,提出了一种基于神经网络-Monte Carlo的结构系统可靠性分析方法,利用神经网络模型预测方法降低Monte Carlo法计算结构可靠性指标的工作量,并与传统可靠性分析方法对比,验证了该方法对结构系统可靠性分析的精度要求及计算效率。结果表明,十五层框架结构系统可靠性分析方法比Monte Carlo法直接计算的失效概率降低了0.03%,且计算工作量减少为1%,该方法的计算结果满足精度要求且计算效率大幅提升。 展开更多
关键词 结构系统 monte Carlo法 神经网络 预测模型
下载PDF
防波堤的人工神经网络Monte Carlo法可靠性分析 被引量:13
9
作者 张向东 董胜 +1 位作者 张磊 张国伟 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期82-86,共5页
防波堤建设费用巨大,且一旦遭到破坏,后果甚为严重,因此,如何准确地计算防波堤的可靠性意义重大。随着人工神经网络理论的快速发展,人工神经网络方法在结构可靠性分析中的应用逐渐得到重视。基于神经网络的Monte Carlo法计算直立式防波... 防波堤建设费用巨大,且一旦遭到破坏,后果甚为严重,因此,如何准确地计算防波堤的可靠性意义重大。随着人工神经网络理论的快速发展,人工神经网络方法在结构可靠性分析中的应用逐渐得到重视。基于神经网络的Monte Carlo法计算直立式防波堤的可靠性,概率意义明确。以秦皇岛典型直立堤为算例,采用基于神经网络的Monte Carlo法对直立式防波堤进行可靠性分析时,将直立堤滑动破坏和倾覆破坏的极限状态方程中的所有参数均作为变量处理,并将计算结果与Monte Carlo模拟的直接抽样法、重要抽样法以及独立变量JC法的计算结果进行对比。结果表明:基于神经网络的MonteCarlo法和Monte Carlo模拟的直接抽样法、重要抽样法计算结果相近,而比独立变量JC法的计算结果略低。 展开更多
关键词 monteCARLO模拟 人工神经网络 直立式防波堤 可靠度 波浪力 浮托力
下载PDF
用改进的有限元Monte-Carlo法分析金属矿山点柱的可靠性 被引量:12
10
作者 邓建 李夕兵 古德生 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2002年第4期459-465,共7页
以某铜矿为例,简介无间柱连续采矿法。提出了基于MCS-ANN-FEM的改进的有限元Monte-Carlo法。通过无间柱连续采矿凿岩硐室点柱的强度和应力的计算,建立可靠性分析的隐式极限状态方程,然后运用基于MCS-ANN-FEM的改进的有限元Monte-Carlo... 以某铜矿为例,简介无间柱连续采矿法。提出了基于MCS-ANN-FEM的改进的有限元Monte-Carlo法。通过无间柱连续采矿凿岩硐室点柱的强度和应力的计算,建立可靠性分析的隐式极限状态方程,然后运用基于MCS-ANN-FEM的改进的有限元Monte-Carlo分析方法,对点柱进行全面的可靠性分析和设计。 展开更多
关键词 有限元monte-Carlo法 可靠性 无间柱连续采矿法 点柱
下载PDF
基于人工神经网络和Monte-Carlo法的混凝土配合比优化设计研究 被引量:14
11
作者 刘国华 陈斌 +2 位作者 汪树玉 郑志强 何国余 《水力发电学报》 EI CSCD 北大核心 2003年第4期45-53,共9页
结合BP人工神经网络和Monte Carlo随机试验法 ,建立混凝土配合比的直接优化设计模型 ,并开发出实用软件。该设计过程包括 :( 1 )首先建立配合比试验样本数据库 ,然后根据不同混凝土的设计要求 ,检索该数据库并动态建立网络模型 ;( 2 )... 结合BP人工神经网络和Monte Carlo随机试验法 ,建立混凝土配合比的直接优化设计模型 ,并开发出实用软件。该设计过程包括 :( 1 )首先建立配合比试验样本数据库 ,然后根据不同混凝土的设计要求 ,检索该数据库并动态建立网络模型 ;( 2 )以混凝土原材料和制作工艺作为输入单元 ,混凝土最终性能指标作为输出单元 ,训练、测试BP神经网络 ,并检验其可靠性 ;( 3)以建立的BP神经网络模型和其它配合比限制条件作为约束条件 ,混凝土单位成本作为优化目标建立Monte Carlo直接优化模型 ,设计出混凝土初步配合比 ;( 4 )按《普通混凝土配合比设计规程》对上述设计出的配合比进行试拌、调整 ,得到实际可使用配合比。 展开更多
关键词 水工材料 配合比优化 B-P人工神经网络 monte-CARLO法 混凝土配合比
下载PDF
基于Monte Carlo-神经网络的系统相关失效概率模型 被引量:3
12
作者 李翠玲 谢里阳 李剑锋 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第2期427-430,共4页
相关失效的存在大大降低冗余系统的安全作用,在工程实际中必须加以考虑。根据可靠性数学理论及零件失效机理分析,把零件失效概率看作是基于应力的条件概率,推导系统相关失效概率的数学表达式。通过MonteCarlo法仿真,得到零件条件失效概... 相关失效的存在大大降低冗余系统的安全作用,在工程实际中必须加以考虑。根据可靠性数学理论及零件失效机理分析,把零件失效概率看作是基于应力的条件概率,推导系统相关失效概率的数学表达式。通过MonteCarlo法仿真,得到零件条件失效概率的分布类型;并从已知的低阶失效数据中提取相关失效信息,建立神经网络模型,得到其分布参数。利用该模型可以预测系统中的任意阶相关失效概率,也可以用来预测组成零件相同、环境相同但不同大小的其它系统的相关失效概率。例示其应用方法并检验其预测能力,结果证明该方法准确可靠。 展开更多
关键词 系统可靠性 相关失效 monte carlo法仿真 神经网络 条件失效概率
下载PDF
基于BP神经网-络Monte Carlo法的结构可靠性分析 被引量:6
13
作者 张亮 赵娜 《现代电子技术》 2010年第12期59-61,共3页
提出通过人工神经网络拟合极限状态函数的方法来解决结构可靠性问题。根据多层神经网络映射存在定理,对于任何在闭区间内的一个连续函数都可以用含有一个隐含层的BP网络来逼近。应用此定理,通过人工神经网络拟合极限状态方程,借助神经... 提出通过人工神经网络拟合极限状态函数的方法来解决结构可靠性问题。根据多层神经网络映射存在定理,对于任何在闭区间内的一个连续函数都可以用含有一个隐含层的BP网络来逼近。应用此定理,通过人工神经网络拟合极限状态方程,借助神经网络的函数映射关系产生大量的极限状态函数值,作为下一步的分析数据。此过程并不像MonteCarlo法对每一点都做确定性计算,因而达到减少计算工作量的目的。该方法仅采用Monte Carlo法随机抽样的思路,对大范围的数据进行概率分析,通过概率分析得到极限状态函数值的均值和标准差,以便求得结构系统的可靠性指标,进行结构系统可靠性分析。 展开更多
关键词 BP神经网络 monte Carlo法 结构可靠性 极限状态函数
下载PDF
基于ANN响应面法和Monte Carlo法的海洋平台可靠度分析 被引量:2
14
作者 黄小光 许金泉 《中国海洋平台》 2010年第2期45-49,56,共6页
利用人工神经网络(ANN)响应面法和Monte Carlo法对波流联合作用下固定式海洋平台进行了可靠度分析。综合考虑各种随机变量对海洋平台失效的影响,通过有限元方法获得一组随机变量和结构响应数据,利用BP神经网络模型构建平台结构的隐式功... 利用人工神经网络(ANN)响应面法和Monte Carlo法对波流联合作用下固定式海洋平台进行了可靠度分析。综合考虑各种随机变量对海洋平台失效的影响,通过有限元方法获得一组随机变量和结构响应数据,利用BP神经网络模型构建平台结构的隐式功能函数。基于Monte Carlo方法由MATLAB软件产生大量的随机变量组合,通过统计网络映射结果确定结构的可靠性。 展开更多
关键词 人工神经网络 monte Carlo法 功能函数 可靠度
下载PDF
基于神经网络和Monte-Carlo模拟的钻井工程风险评估方法 被引量:13
15
作者 魏凯 管志川 +2 位作者 韦杰宏 傅盛林 赵廷峰 《中国安全科学学报》 CAS CSCD 北大核心 2013年第2期123-128,共6页
针对钻井工程监测参数与井下复杂事故的相关性及其本身的不确定性,基于BP神经网络建立钻井工程风险的监测评估方法。首先,通过样本训练确定钻井工程风险的隐式非线性功能函数;其次,通过仿真推断相应工况下井下复杂事故的风险类型。最后... 针对钻井工程监测参数与井下复杂事故的相关性及其本身的不确定性,基于BP神经网络建立钻井工程风险的监测评估方法。首先,通过样本训练确定钻井工程风险的隐式非线性功能函数;其次,通过仿真推断相应工况下井下复杂事故的风险类型。最后,考虑到监测参数与井下复杂事故的映射关系、监测参数本身的不确定性及风险监测模型的可靠性,基于可靠性理论的Monte-Carlo方法,计算相应井下复杂事故的风险概率,并以风险柱状图描述井下复杂事故的风险。实例分析表明,用该理论方法计算得到钻井工程风险监测评估结果与工程实际基本吻合。 展开更多
关键词 钻井工程风险 神经网络 monte-CARLO模拟 风险概率 风险柱状图
下载PDF
基于有限元-神经网络-Monte-Carlo的结构可靠度计算方法 被引量:3
16
作者 许永江 邢兵 吴进良 《重庆交通大学学报(自然科学版)》 CAS 2008年第2期188-190,216,共4页
针对以往结构可靠度计算方法的不足,根据结构可靠度理论,引入神经网络理论和Monte-Carlo理论,结合结构有限元分析方法,提出基于有限元-神经网络-Monte-Carlo的结构可靠度计算方法;首先,建立结构有限元法分析模型,进行结构分析得到相应... 针对以往结构可靠度计算方法的不足,根据结构可靠度理论,引入神经网络理论和Monte-Carlo理论,结合结构有限元分析方法,提出基于有限元-神经网络-Monte-Carlo的结构可靠度计算方法;首先,建立结构有限元法分析模型,进行结构分析得到相应的结构响应量;然后,用得到的作用效应和结构响应量作为神经网络的训练样本和检验样本对神经网络进行训练,得到高度非线性映射关系的结构作用效应-结构响应模型;利用神经网络随机产生足够多的结构响应值;最后,用Monte-Carlo法计算结构的可靠度。该方法充分发挥了各方法的优点,相互弥补了不足,大大提高了计算效率,为结构可靠度计算提供了新的思路。 展开更多
关键词 可靠度 有限元 人工神经网络 蒙特卡罗法
下载PDF
Neural Network-Based Second Order Reliability Method(NNBSORM)for Laminated Composite Plates in Free Vibration 被引量:4
17
作者 Mena E.Tawfik Peter L.Bishay Edward E.Sadek 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第4期105-129,共25页
Monte Carlo Simulations(MCS),commonly used for reliability analysis,require a large amount of data points to obtain acceptable accuracy,even if the Subset Simulation with Importance Sampling(SS/IS)methods are used.The... Monte Carlo Simulations(MCS),commonly used for reliability analysis,require a large amount of data points to obtain acceptable accuracy,even if the Subset Simulation with Importance Sampling(SS/IS)methods are used.The Second Order Reliability Method(SORM)has proved to be an excellent rapid tool in the stochastic analysis of laminated composite structures,when compared to the slower MCS techniques.However,SORM requires differentiating the performance function with respect to each of the random variables involved in the simulation.The most suitable approach to do this is to use a symbolic solver,which renders the simulations very slow,although still faster than MCS.Moreover,the inability to obtain the derivative of the performance function with respect to some parameters,such as ply thickness,limits the capabilities of the classical SORM.In this work,a Neural Network-Based Second Order Reliability Method(NNBSORM)is developed to replace the finite element algorithm in the stochastic analysis of laminated composite plates in free vibration.Because of the ability to obtain expressions for the first and second derivatives of the NN system outputs with respect to any of its inputs,such as material properties,ply thicknesses and orientation angles,the need for using a symbolic solver to calculate the derivatives of the performance function no longer exists.The proposed approach is accordingly much faster,and easily allows for the consideration of ply thickness uncertainty.The present analysis showed that dealing with ply thicknesses as random variables results in 37%increase in the laminate’s probability of failure. 展开更多
关键词 Reliability analysis artificial neural network composite LAMINATES SUBSET simulation IMPORTANCE sampling monte Carlo
下载PDF
Generation Reliability Evaluation in Deregulated Power Systems Using Game Theory and Neural Networks
18
作者 Hossein Haroonabadi Hassan Barati 《Smart Grid and Renewable Energy》 2012年第2期89-95,共7页
Deregulation policy has caused some changes in the concepts of power systems reliability assessment and enhancement. In the present research, generation reliability is considered, and a method for its assessment is pr... Deregulation policy has caused some changes in the concepts of power systems reliability assessment and enhancement. In the present research, generation reliability is considered, and a method for its assessment is proposed using Game Theory (GT) and Neural Networks (NN). Also, due to the stochastic behavior of power markets and generators’ forced outages, Monte Carlo Simulation (MCS) is used for reliability evaluation. Generation reliability focuses merely on the interaction between generation complex and load. Therefore, in the research, based on the behavior of players in the market and using GT, two outcomes are considered: cooperation and non-cooperation. The proposed method is assessed on IEEE-Reliability Test System with satisfactory results. Loss of Load Expectation (LOLE) is used as the reliability index and the results show generation reliability in cooperation market is better than non-cooperation outcome. 展开更多
关键词 Power Market GENERATION Reliability GAME Theory (GT) neural networks (NN) monte Carlo Simulation (MCS)
下载PDF
Upsampling Monte Carlo neutron transport simulation tallies using a convolutional neural network 被引量:1
19
作者 Andrew Osborne Joffrey Dorville Paul Romano 《Energy and AI》 2023年第3期117-125,共9页
The physical quantities calculated by nuclear reactor Monte Carlo simulations are typically recorded on a grid of two or three spatial dimensions and one dimension of neutron energy.Because of this,increasing the reso... The physical quantities calculated by nuclear reactor Monte Carlo simulations are typically recorded on a grid of two or three spatial dimensions and one dimension of neutron energy.Because of this,increasing the resolution of the calculated quantities can have a significant impact on the memory and CPU time required to run a simulation.Convolutional neural networks have been shown to accurately upsample coarse-resolution photo-graphic images to resolutions multiple times finer than the originals.Here we show that a convolutional neural network can accurately upsample flux tallies in a Monte Carlo neutron transport simulation by a factor of two along the spatial and energy dimensions.Neutron flux tallies in pressurized water reactor assemblies were calculated using OpenMC at a 64×64 pixel spatial resolution and 8 neutron energy groups for input to the neural network.The network upsamples the low-resolution neutron flux to 128×128 pixel spatial resolution and 16 neutron energy groups.High-resolution neutron flux tallies and their uncertainties were also calculated with OpenMC and compared with the network’s predictions.The upsampled data and the high-resolution tally results agree to within the statistical uncertainty calculated by OpenMC. 展开更多
关键词 OpenMC Convolutional neural network Residual network Neutron monte Carlo
原文传递
基于优化WOA-BP策略的土体冻胀率因素敏感性定量分析
20
作者 姚兆明 孔宏水 +1 位作者 王洵 齐健 《河南城建学院学报》 CAS 2024年第4期47-57,共11页
土体冻胀是寒区工程建设面临的重要挑战之一,对其进行准确预测和敏感性分析,对于保障工程安全与稳定、预防结构变形与破坏至关重要。针对东北某矿区三种土样,在不同冷端温度、含水率和干密度条件下,实施了单向冻结且不补水的冻胀实验。... 土体冻胀是寒区工程建设面临的重要挑战之一,对其进行准确预测和敏感性分析,对于保障工程安全与稳定、预防结构变形与破坏至关重要。针对东北某矿区三种土样,在不同冷端温度、含水率和干密度条件下,实施了单向冻结且不补水的冻胀实验。基于实验数据,分析了影响冻胀率的关键因素,构建了以干密度、含水率、冷端温度、比重及结冰温度为输入变量的WOA-BP预测模型,引入Chebyshev混沌映射与自适应权重调整策略,优化得到Chebyshev混沌映射自适应权重的WOA-BP神经网络。经验证,该模型预测误差小,可以较好地预测土体的冻胀率。结合Garson算法、扰动法及蒙特卡洛模拟等三种方法,对土体冻胀率的影响因素进行了敏感性分析,所得结果一致。该矿区土样的冻胀率对干密度、比重、含水率、冷端温度、结冰温度变化的敏感程度依次降低。 展开更多
关键词 土体冻胀率 因素敏感性 WOA-BP神经网络 Chebyshev混沌映射 Garson算法 蒙特卡洛模拟
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部