Monolayer FeSe films grown on SrTiO_3(STO)substrate show superconducting gap-opening temperatures(T_c) which are almost an order of magnitude higher than those of the bulk FeSe and are highest among all known Fe-based...Monolayer FeSe films grown on SrTiO_3(STO)substrate show superconducting gap-opening temperatures(T_c) which are almost an order of magnitude higher than those of the bulk FeSe and are highest among all known Fe-based superconductors. Angle-resolved photoemission spectroscopy observed ‘‘replica bands' ' suggesting the importance of the interaction between FeSe electrons and STO phonons. These facts rejuvenated the quest for T_c enhancement mechanisms in iron-based, especially ironchalcogenide, superconductors. Here, we perform the first numerically-exact sign-problem-free quantum Monte Carlo simulations to iron-based superconductors. We(1) study the electronic pairing mechanism intrinsic to heavily electron doped FeSe films, and(2) examine the effects of electron–phonon interaction between FeSe and STO as well as nematic fluctuations on T_c. Armed with these results, we return to the question ‘‘what makes the Tcof monolayer FeSe on SrTiO_3 so high?'' in the conclusion and discussions.展开更多
基金the National Supercomputer Center in Guangzhou for computational supportZXL and HY were supported in part by the National Thousand Young-Talents Program and the National Natural Science Foundation of China (11474175)+1 种基金FW was supported by the National Natural Science Foundation of China (11374018)DHL was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, Grant DE-AC0205CH11231
文摘Monolayer FeSe films grown on SrTiO_3(STO)substrate show superconducting gap-opening temperatures(T_c) which are almost an order of magnitude higher than those of the bulk FeSe and are highest among all known Fe-based superconductors. Angle-resolved photoemission spectroscopy observed ‘‘replica bands' ' suggesting the importance of the interaction between FeSe electrons and STO phonons. These facts rejuvenated the quest for T_c enhancement mechanisms in iron-based, especially ironchalcogenide, superconductors. Here, we perform the first numerically-exact sign-problem-free quantum Monte Carlo simulations to iron-based superconductors. We(1) study the electronic pairing mechanism intrinsic to heavily electron doped FeSe films, and(2) examine the effects of electron–phonon interaction between FeSe and STO as well as nematic fluctuations on T_c. Armed with these results, we return to the question ‘‘what makes the Tcof monolayer FeSe on SrTiO_3 so high?'' in the conclusion and discussions.