期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Monthly prediction of tropical cyclone activity over the South China Sea using the FGOALS-f2 ensemble prediction system
1
作者 Shentong Li Jinxiao Li +3 位作者 Jing Yang Qing Bao Yimin Liu Zili Shen 《Atmospheric and Oceanic Science Letters》 CSCD 2022年第2期26-32,共7页
The monthly prediction skill for tropical cyclone(TC)activity in the South China Sea(SCS)during the typhoon season(July to November)was evaluated using the FGOALS-f2 ensemble prediction system.Specifically,the predict... The monthly prediction skill for tropical cyclone(TC)activity in the South China Sea(SCS)during the typhoon season(July to November)was evaluated using the FGOALS-f2 ensemble prediction system.Specifically,the prediction skill of the system at a 10-day lead time for monthly TC activity is given based on 35-year(1981–2015)hindcasts with 24 ensemble members.The results show that FGOALS-f2 can capture the climatology of TC track densities in each month,but there is a delay in the monthly southward movement in the area of high track densities of TCs.The temporal correlation coefficient of TC frequency fluctuates across the different months,among which the highest appears in October(0.59)and the lowest in August(0.30).The rank correlation coefficients of TC track densities are relatively higher(R>0.6)in July,September,and November,while those in August and October are relatively lower(R within 0.2 to 0.6).For real-time prediction of TCs in 2020(July to November),FGOALS-f2 demonstrates a skillful probabilistic prediction of TC genesis and movement.Besides,the system successfully forecasts the correct sign of monthly anomalies of TC frequency and accumulated cyclone energy for 2020(July to November)in the SCS. 展开更多
关键词 Tropical cyclone South China Sea monthly prediction prediction system FGOALS-f2
下载PDF
An Approach to Extract Effective Information of Monthly Dynamical Prediction-The Use of Ensemble Method 被引量:1
2
作者 杨辉 张道民 纪立人 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第2期283-293,共11页
The approach of getting useful information of monthly dynamical prediction from ensemble forecasts is studied. The extended range ensemble forecasts (8 members, the initial perturbations of the lagged average forecast... The approach of getting useful information of monthly dynamical prediction from ensemble forecasts is studied. The extended range ensemble forecasts (8 members, the initial perturbations of the lagged average forecast (LAF)(0000, 0600, 1200 and 1800 GMT in two consecutive days) of the 500 hPa height field with the global spectral model (T63L16) from January to May 1997 are provided by the National Climate Center of China. The relationship between the spread of ensemble measured by root–mean–square deviation of ensemble member from ensemble mean and forecast skill (the anomaly correlation or the root–mean–square distance between the ensemble mean forecast and the observation) is significant. The spread of ensemble can evaluate the useful forecast days N for the best estimate of 30 days mean. Thus, a weighted mean approach based on ensemble spread is put forward for monthly dynamical prediction. The anomaly correlation of the weighted monthly mean by the ensemble spread is higher than that of both the arithmetic mean and the linear weighted mean. Better results of the monthly mean circulation and anomaly are obtained from the ensemble spread weighted mean. Key words Monthly prediction - Ensemble method - Spread of ensemble Supported by the Excellent National State Key Laboratory Project (49823002), the National Key Project ‘Study on Chinese Short-Term Climate Forecast System’ (96-908-02) and IAP Innovation Foundation (8-1308).The data were provided through the National Climate Center of China. The authors wish to thank Ms. Chen Lijuan for her assistance. 展开更多
关键词 monthly prediction Ensemble method Spread of ensemble
下载PDF
Monthly Mean Temperature Prediction Based on a Multi-level Mapping Model of Neural Network BP Type 被引量:1
3
作者 严绍瑾 彭永清 郭光 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1995年第2期225-232,共8页
In terms of 34-year monthly mean temperature series in 1946-1979,the multi-level maPPing model of neural netWork BP type was applied to calculate the system's fractual dimension Do=2'8,leading tO a three-level... In terms of 34-year monthly mean temperature series in 1946-1979,the multi-level maPPing model of neural netWork BP type was applied to calculate the system's fractual dimension Do=2'8,leading tO a three-level model of this type with ixj=3x2,k=l,and the 1980 monthly mean temperture predichon on a long-t6rm basis were prepared by steadily modifying the weighting coefficient,making for the correlation coefficient of 97% with the measurements.Furthermore,the weighhng parameter was modified for each month of 1980 by means of observations,therefore constrcuhng monthly mean temperature forecasts from January to December of the year,reaching the correlation of 99.9% with the measurements.Likewise,the resulting 1981 monthly predictions on a long-range basis with 1946-1980 corresponding records yielded the correlahon of 98% and the month-tO month forecasts of 99.4%. 展开更多
关键词 Neural netWork BP-type multilevel mapping model monthly mean temperature prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部