Microreactors are increasingly used for green and safe chemical processes owing to their benefits of superior mass and heat transfer,increased yield,safety,and simplicity of control.However,immobilizing catalysts in m...Microreactors are increasingly used for green and safe chemical processes owing to their benefits of superior mass and heat transfer,increased yield,safety,and simplicity of control.However,immobilizing catalysts in microreactors remains challenging.In this investigation,a technique for creating Cu_(2)O/montmorillonite catalyst coating,using electrostatic attraction for layer-by-layer self-assembly,was proposed.The montmorillonite film's morphology and thickness could be efficiently regulated by adjusting the degree of exfoliation and surface charge of montmorillonite,alongside layer-by-layer coating times.The Cu_(2)O nanoparticles were immobilized using the flow deposition approach.The resulting Cu_(2)O@montmorillonite-film-coated capillary microreactor successfully transformed glycerol into dihydroxyacetone.The conversion of glycerol and product selectivity could be controlled by adjusting the molar ratio of reactants,temperature,residence time,and Cu_(2)O loading.The maximum glycerol conversion observed was 47.6%,with a 27%selectivity toward dihydroxyacetone.The study presents a technique for immobilizing montmorillonite-based catalyst coatings in capillary tubing,which can serve as a foundation for the future application of microreactors in glycerol conversion.展开更多
The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in mon...The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in montmorillonite aerogels(3D-Mt)through vacuum impregnation to prepare 3D-Mt/PEG composite PCMs.When used as a support matrix,3D-Mt can effectively prevent PEG leakage and act as a flame-retardant barrier to reduce the flammability of PEG.Simultaneously,3D-Mt/PEG demonstrates outstanding shape retention,increased thermal energy storage density,and commendable thermal and chemical stability.The phase transition enthalpy of 3D-Mt/PEG can reach 167.53 J/g and remains stable even after 50 heating-cooling cycles.Furthermore,the vertical sheet-like structure of 3D-Mt establishes directional heat transport channels,facilitating efficient phonon transfer.This configuration results in highly anisotropic thermal conductivities that ensure swift thermal responses and efficient heat conduction.This study addresses the shortcomings of PCMs,including the issues of leakage and inadequate flame retardancy.It achieves the development and design of 3D-Mt/PEG with ultrahigh strength,superior flame retardancy,and directional heat transfer.Therefore,this work offers a design strategy for the preparation of high-performance composite PCMs.The 3D-Mt/PEG with vertically aligned and well-ordered array structure developed in this research shows great potential for thermal management and photothermal conversion applications.展开更多
Hydrogel is a kind of three-dimensional crosslinked polymer material with high moisture content.However,due to the network defects of polymer gels,traditional hydrogels are usually brittle and fragile,which limits the...Hydrogel is a kind of three-dimensional crosslinked polymer material with high moisture content.However,due to the network defects of polymer gels,traditional hydrogels are usually brittle and fragile,which limits their practical applications.Herein,we present a Hofmeister effect-aided facile strategy to prepare high-performance poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels.Layered montmorillonite nanosheets can not only serve as crosslinking agents to enhance the mechanical properties of the hydrogel but also promote the ion conduction.More importantly,based on the Hofmeister effect,the presence of(NH_(4))_(2)SO_(4)can endow nanocomposite hydrogels with excellent mechanical properties by affecting PVA chains'aggregation state and crystallinity.As a result,the as-prepared nanocomposite hydrogels possess unique physical properties,including robust mechanical and electrical properties.The as-prepared hydrogels can be further assembled into a high-performance flexible sensor,which can sensitively detect large-scale and small-scale human activities.The simple design concept of this work is believed to provide a new prospect for developing robust nanocomposite hydrogels and flexible devices in the future.展开更多
Montmorillonite and clinoptilolite zeolite were used as representative materials to prepare calcined clay-cement binary cementitious materials in order to study the effect of calcination treatment on the activation of...Montmorillonite and clinoptilolite zeolite were used as representative materials to prepare calcined clay-cement binary cementitious materials in order to study the effect of calcination treatment on the activation of clay minerals and the activity difference between layered and framed clays in this research.The influence of different calcined clay content(2%,4%,6%,8%,10%)on the fluidity,compressive strength,microstructure,phase change,and hydration heat of cement-based materials were analyzed.The calcined clay improves the fluidity of cement-based materials as compared with the uncalcined group.The addition of calcined montmorillonite(CMT)improves the development of mechanical strength,and the optimal compressive strength reaches 85 MPa at 28 days with 8%CMT.However,the activity of calcined clinoptilolite zeolite(CZL)is weak with few reaction sites,which slightly reduced the mechanical strength as compared to the blank sample.The addition of CMT changes the microscopic morphology of hydration products such as C-S-H and C-A-H,leading to the formation and transformation of ettringite in the early stage.It promotes the gradual polymerization of Si-O bonds into Si-O-Si bonds simultaneously,which accelerates the early hydration process.However,CZL acts mainly as a filling function in the cementitious system.In brief,CMT as an admixture can improve the mechanical properties of cement,but CZL has little effect.This work provides a guideline for the applications of calcined clay in cement,considering the influence of clay type on workability and mechanical strength.展开更多
基金support from the National Natural Science Foundation of China(2207213641672033)+2 种基金the research grants from Engineering Research Center of Non-metallic Minerals of Zhejiang Province(ZD2023K01)the projects from Qing Yang Institute for Industrial Minerals(KYYHX-20220336KYY-HX-20170557).
文摘Microreactors are increasingly used for green and safe chemical processes owing to their benefits of superior mass and heat transfer,increased yield,safety,and simplicity of control.However,immobilizing catalysts in microreactors remains challenging.In this investigation,a technique for creating Cu_(2)O/montmorillonite catalyst coating,using electrostatic attraction for layer-by-layer self-assembly,was proposed.The montmorillonite film's morphology and thickness could be efficiently regulated by adjusting the degree of exfoliation and surface charge of montmorillonite,alongside layer-by-layer coating times.The Cu_(2)O nanoparticles were immobilized using the flow deposition approach.The resulting Cu_(2)O@montmorillonite-film-coated capillary microreactor successfully transformed glycerol into dihydroxyacetone.The conversion of glycerol and product selectivity could be controlled by adjusting the molar ratio of reactants,temperature,residence time,and Cu_(2)O loading.The maximum glycerol conversion observed was 47.6%,with a 27%selectivity toward dihydroxyacetone.The study presents a technique for immobilizing montmorillonite-based catalyst coatings in capillary tubing,which can serve as a foundation for the future application of microreactors in glycerol conversion.
基金supported by the National Natural Science Foundation of China(No.52104265)。
文摘The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in montmorillonite aerogels(3D-Mt)through vacuum impregnation to prepare 3D-Mt/PEG composite PCMs.When used as a support matrix,3D-Mt can effectively prevent PEG leakage and act as a flame-retardant barrier to reduce the flammability of PEG.Simultaneously,3D-Mt/PEG demonstrates outstanding shape retention,increased thermal energy storage density,and commendable thermal and chemical stability.The phase transition enthalpy of 3D-Mt/PEG can reach 167.53 J/g and remains stable even after 50 heating-cooling cycles.Furthermore,the vertical sheet-like structure of 3D-Mt establishes directional heat transport channels,facilitating efficient phonon transfer.This configuration results in highly anisotropic thermal conductivities that ensure swift thermal responses and efficient heat conduction.This study addresses the shortcomings of PCMs,including the issues of leakage and inadequate flame retardancy.It achieves the development and design of 3D-Mt/PEG with ultrahigh strength,superior flame retardancy,and directional heat transfer.Therefore,this work offers a design strategy for the preparation of high-performance composite PCMs.The 3D-Mt/PEG with vertically aligned and well-ordered array structure developed in this research shows great potential for thermal management and photothermal conversion applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.12274356)the Fundamental Research Funds for the Central Universities(Grant No.20720220022)the 111 Project(Grant No.B16029)。
文摘Hydrogel is a kind of three-dimensional crosslinked polymer material with high moisture content.However,due to the network defects of polymer gels,traditional hydrogels are usually brittle and fragile,which limits their practical applications.Herein,we present a Hofmeister effect-aided facile strategy to prepare high-performance poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels.Layered montmorillonite nanosheets can not only serve as crosslinking agents to enhance the mechanical properties of the hydrogel but also promote the ion conduction.More importantly,based on the Hofmeister effect,the presence of(NH_(4))_(2)SO_(4)can endow nanocomposite hydrogels with excellent mechanical properties by affecting PVA chains'aggregation state and crystallinity.As a result,the as-prepared nanocomposite hydrogels possess unique physical properties,including robust mechanical and electrical properties.The as-prepared hydrogels can be further assembled into a high-performance flexible sensor,which can sensitively detect large-scale and small-scale human activities.The simple design concept of this work is believed to provide a new prospect for developing robust nanocomposite hydrogels and flexible devices in the future.
基金The research presented in this paper was supported by National Natural Science Foundation of China(Grant No.52272031)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan),and the Opening Fund of Guangxi Key Laboratory of New Energy and Building Energy Saving(Grant No.19-J-22-2)+3 种基金Key Research and Development Program of Hubei Province(Grant No.2020BAB065)Key Research and Development Program of Jiangxi Province(Grant No.20201BBG71011)Fundamental Research Funds for the Central Universities,CHD(Grant No.300102211506)Opening Fund of Key Laboratory of Advanced Building Materials of Anhui Province(Grant No.JZCL001KF).
文摘Montmorillonite and clinoptilolite zeolite were used as representative materials to prepare calcined clay-cement binary cementitious materials in order to study the effect of calcination treatment on the activation of clay minerals and the activity difference between layered and framed clays in this research.The influence of different calcined clay content(2%,4%,6%,8%,10%)on the fluidity,compressive strength,microstructure,phase change,and hydration heat of cement-based materials were analyzed.The calcined clay improves the fluidity of cement-based materials as compared with the uncalcined group.The addition of calcined montmorillonite(CMT)improves the development of mechanical strength,and the optimal compressive strength reaches 85 MPa at 28 days with 8%CMT.However,the activity of calcined clinoptilolite zeolite(CZL)is weak with few reaction sites,which slightly reduced the mechanical strength as compared to the blank sample.The addition of CMT changes the microscopic morphology of hydration products such as C-S-H and C-A-H,leading to the formation and transformation of ettringite in the early stage.It promotes the gradual polymerization of Si-O bonds into Si-O-Si bonds simultaneously,which accelerates the early hydration process.However,CZL acts mainly as a filling function in the cementitious system.In brief,CMT as an admixture can improve the mechanical properties of cement,but CZL has little effect.This work provides a guideline for the applications of calcined clay in cement,considering the influence of clay type on workability and mechanical strength.