The representation for the Moore-Penrose inverse of the matrix[AC BD]is derived by using the solvability theory of linear equations,where A∈C^(m×n),B∈C^(m×p),C∈C^(q×n)and D∈C^(q×p),with which s...The representation for the Moore-Penrose inverse of the matrix[AC BD]is derived by using the solvability theory of linear equations,where A∈C^(m×n),B∈C^(m×p),C∈C^(q×n)and D∈C^(q×p),with which some special cases are discussed.展开更多
设X是无穷维Hilbert空间,H表示X⊕X上的有界无穷维Hamilton算子H=(A C B-A*),其中B和C为自伴算子.本文研究了无穷维Hamilton算子H的Moore-Penrose广义逆.利用空间分解等方法,当B=0或C为Moore-Penrose可逆的情况下给出H为Moore-Penrose...设X是无穷维Hilbert空间,H表示X⊕X上的有界无穷维Hamilton算子H=(A C B-A*),其中B和C为自伴算子.本文研究了无穷维Hamilton算子H的Moore-Penrose广义逆.利用空间分解等方法,当B=0或C为Moore-Penrose可逆的情况下给出H为Moore-Penrose可逆的等价条件.此外,举例说明了结论的有效性.展开更多
文摘The representation for the Moore-Penrose inverse of the matrix[AC BD]is derived by using the solvability theory of linear equations,where A∈C^(m×n),B∈C^(m×p),C∈C^(q×n)and D∈C^(q×p),with which some special cases are discussed.
文摘设X是无穷维Hilbert空间,H表示X⊕X上的有界无穷维Hamilton算子H=(A C B-A*),其中B和C为自伴算子.本文研究了无穷维Hamilton算子H的Moore-Penrose广义逆.利用空间分解等方法,当B=0或C为Moore-Penrose可逆的情况下给出H为Moore-Penrose可逆的等价条件.此外,举例说明了结论的有效性.