期刊文献+
共找到55,203篇文章
< 1 2 250 >
每页显示 20 50 100
IMPROVEMENT ACCURACY OF SYSTEM IDENTIFICATION BASED ON MORLET WAVELET 被引量:1
1
作者 岳林 费庆国 张令弥 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第3期206-211,共6页
A time frequency de-noising method is presented in the frequency response function (FRF) preprocessing based on the continuous wavelet transform. Morlet wavelet is employed to construct a filter bank to reduce the n... A time frequency de-noising method is presented in the frequency response function (FRF) preprocessing based on the continuous wavelet transform. Morlet wavelet is employed to construct a filter bank to reduce the noise. The filter bank is a finite impulse response (FIR) linear phase filter thus maintaining phase consistency. A modified Morlet base function is proposed to meet the time frequency resolution by using transient excitation. Numerical simulation is conducted using a Group for Aeronautical Research and Technology in Europe (GARTEUR) aircraft model excited by the transient input. The white noise is added to the simulated data. Results show that the accuracy of the system identification is improved. The estimated error of the mode damping is decreased by 30% compared with that obtained from the noise-corrupted signal. 展开更多
关键词 wavelet filtering morlet wavelet frequency response function system identification
下载PDF
基于Morlet小波与CART决策树的滚动轴承故障诊断方法 被引量:1
2
作者 刘俊利 缪炳荣 +2 位作者 张盈 李永健 黄仲 《机械强度》 CAS CSCD 北大核心 2024年第1期1-8,共8页
针对滚动轴承故障诊断过程中样本处理、故障识别等技术问题,提出一种基于Morlet小波和分类回归树(Classification and Regression Tree,CART)的滚动轴承故障诊断方法。首先,利用Morlet小波分析方法和移动窗方法对轴承振动信号进行样本... 针对滚动轴承故障诊断过程中样本处理、故障识别等技术问题,提出一种基于Morlet小波和分类回归树(Classification and Regression Tree,CART)的滚动轴承故障诊断方法。首先,利用Morlet小波分析方法和移动窗方法对轴承振动信号进行样本处理。其次,对提取的短样本进行变分模态分解与特征提取,完成训练集和测试集的构建。然后,使用训练集训练CART决策树分类模型,同时引入随机搜索和K折交叉验证用于模型关键参数优化,以获取理想的轴承故障分类模型。测试集验证结果表明,该方法不但能实现多种轴承故障的有效诊断、在含噪测试集中表现良好,而且单个样本的数据长度和采样时长的缩短效果明显。 展开更多
关键词 故障诊断 滚动轴承 morlet 小波 VMD CART 决策树
下载PDF
Multi-Time Scale Analysis of Runoff at the Yangtze Estuary Based on the Morlet Wavelet Transform Method 被引量:9
3
作者 KUANG Cui-ping SU Ping +4 位作者 GU Jie CHEN Wu-jun ZHANG Jian-le ZHANG Wan-lei ZHANG Yong-feng 《Journal of Mountain Science》 SCIE CSCD 2014年第6期1499-1506,共8页
Runoff series of the Yangtze River presents an intricate variation tendency under the reinforced influence of human activities.The Morlet Wavelet Transform method has been applied to analyze the annual runoff data fro... Runoff series of the Yangtze River presents an intricate variation tendency under the reinforced influence of human activities.The Morlet Wavelet Transform method has been applied to analyze the annual runoff data from 1950 to 2011 at the Yangtze River Estuary.It can clearly reveal the multi-time scales structure,break point,change and distribution of periodic variation in the different time scales of the runoff series.The main conclusions are that:1) Repeated periodic oscillations accompanied by an extremely large fluctuation are presented in the runoff series with an obvious difference between wet and dry years,and the major periods of the time series are about 3,8,16 and 23 years respectively.Among them,the presented maximum periodic oscillation is 23 years scale.2) In the 23-year time scale,the wet periods are 1950-1958,1969-1980 and 1992-2003,and the dry periods are 1959-1968,1981-1991 and 2004-2011.3) It can be predicted from the view of long time scales that the low annual runoff will likely occur in the near future. 展开更多
关键词 Datong station wavelet transform Runoff series Periodic characteristics
下载PDF
Experimental Study on Sloshing Characteristics in the Elastic Tank Based on Morlet Wavelet Transform 被引量:2
4
作者 JIANG Mei-rong ZHONG Wen-jun +4 位作者 YU Jian-xing LIU Pei-lin YIN Han-jun WANG Shou-dong MA Yu-xiang 《China Ocean Engineering》 SCIE EI CSCD 2018年第4期400-412,共13页
Hydroelastic effect of sloshing is studied through an experimental investigation. Different excitation frequencies are considered with low-fill-depth and large amplitude. Morlet wavelet transform is introduced to anal... Hydroelastic effect of sloshing is studied through an experimental investigation. Different excitation frequencies are considered with low-fill-depth and large amplitude. Morlet wavelet transform is introduced to analyze the free surface elevations and sloshing pressures. It focuses on variations and distributions of the wavelet energy in elastic tanks. The evolutions of theoretical and experimental wavelet spectra are discussed and the corresponding Fourier spectrums are compared. Afterwards, average values of the wavelet spectra are extracted to do a quantitative study at various points. From the wavelet analysis, sloshing energies are mainly distributed around the external excitation frequency and expanded to high frequencies under violent condition. In resonance, experimental wavelet energy of the elevation in elastic tanks is obviously less than that in the rigid one; for sloshing pressures, the elastic wavelet energy close to the rigid one and conspicuous impulse is observed. It recommends engineers to concern the primary natural frequency and impulsive peak pressures. 展开更多
关键词 SLOSHING elastic tank wavelet transform free surface elevation PRESSURE
下载PDF
Adaptive waveform design based on Morlet wavelet for ultra-wideband MIMO radar
5
作者 Chenhe Ji Yaoliang Song Qiang Du 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期362-369,共8页
For the issue of deterioration in detection performance caused by dynamically changing environment in ultra-wideband(UWB) multiple input multiple output(MIMO) radar, this paper proposes a novel adaptive waveform d... For the issue of deterioration in detection performance caused by dynamically changing environment in ultra-wideband(UWB) multiple input multiple output(MIMO) radar, this paper proposes a novel adaptive waveform design which is aimed to improve the ability of discriminating target and clutter from the radar scene. Firstly, a sequence of Morlet wavelet pulses with frequency hopping and pulse position modulation by Welch-Costas array is designed. Then a waveform optimization solution is proposed which is achieved by applying the minimization mutual-information(MI) strategy. After that, with subsequent iterations of the algorithm, simulation results demonstrate that the optimal waveform design method brings an improvement in the target detection ability in the presence of noise and clutter. 展开更多
关键词 ultra-wideband(UWB) radar multiple input multiple output(MIMO) waveform design morlet wavelet mutual information(MI)
下载PDF
Numerical Computational Heuristic Through Morlet Wavelet Neural Network for Solving the Dynamics of Nonlinear SITR COVID-19
6
作者 Zulqurnain Sabir Abeer S.Alnahdi +4 位作者 Mdi Begum Jeelani Mohamed A.Abdelkawy Muhammad Asif Zahoor Raja Dumitru Baleanu Muhammad Mubashar Hussain 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期763-785,共23页
The present investigations are associated with designing Morlet wavelet neural network(MWNN)for solving a class of susceptible,infected,treatment and recovered(SITR)fractal systems of COVID-19 propagation and control.... The present investigations are associated with designing Morlet wavelet neural network(MWNN)for solving a class of susceptible,infected,treatment and recovered(SITR)fractal systems of COVID-19 propagation and control.The structure of an error function is accessible using the SITR differential form and its initial conditions.The optimization is performed using the MWNN together with the global as well as local search heuristics of genetic algorithm(GA)and active-set algorithm(ASA),i.e.,MWNN-GA-ASA.The detail of each class of the SITR nonlinear COVID-19 system is also discussed.The obtained outcomes of the SITR system are compared with the Runge-Kutta results to check the perfection of the designed method.The statistical analysis is performed using different measures for 30 independent runs as well as 15 variables to authenticate the consistency of the proposed method.The plots of the absolute error,convergence analysis,histogram,performancemeasures,and boxplots are also provided to find the exactness,dependability and stability of the MWNN-GA-ASA. 展开更多
关键词 Nonlinear SITR model morlet function artificial neural networks RUNGE-KUTTA TREATMENT genetic algorithm TREATMENT active-set
下载PDF
基于MK检验和Morlet小波的乐清市降水量分析 被引量:2
7
作者 秦永泰 林柳丞 《水利技术监督》 2024年第9期42-48,共7页
文章为了研究乐清降水年内、年际特征,应用集中度(期)、Mann-Kendall(MK)检验和Morlet小波对乐清1956—2022年的降水量进行分析。结果表明:1956—2022年,乐清降水量年际变化较大,总体呈增长趋势,夏、秋、冬季节呈上升趋势,而春季呈下降... 文章为了研究乐清降水年内、年际特征,应用集中度(期)、Mann-Kendall(MK)检验和Morlet小波对乐清1956—2022年的降水量进行分析。结果表明:1956—2022年,乐清降水量年际变化较大,总体呈增长趋势,夏、秋、冬季节呈上升趋势,而春季呈下降趋势;降水年内分布不均,呈“双峰”型,夏季最大,占全年比重54.3%;全年和四季降水具有相似的丰枯变化周期,分别为7a和16a,未来几年乐清的降水仍处于少雨时段。分析结果对乐清市防汛抗旱和水资源调度管理有重要指导意义。 展开更多
关键词 乐清市 降水量 MANN-KENDALL检验 morlet小波法
下载PDF
基于自适应Morlet小波和WOA方法的牵引齿轮箱故障诊断
8
作者 杜延鹏 韩得水 +2 位作者 吴连军 栾赛 曹朝煜 《机械制造与自动化》 2024年第6期160-163,共4页
为提高轨道交通牵引传动系统用齿轮箱早期故障诊断能力,开发一种Morlet小波自适应参数字典算法,可以实现局部分割与整体数据进行全局分析的功能,通过鲸鱼优化算法自主计算小波字典数据。根据正交匹配追踪结果对振动信号开展稀疏分解,以... 为提高轨道交通牵引传动系统用齿轮箱早期故障诊断能力,开发一种Morlet小波自适应参数字典算法,可以实现局部分割与整体数据进行全局分析的功能,通过鲸鱼优化算法自主计算小波字典数据。根据正交匹配追踪结果对振动信号开展稀疏分解,以包络谱分析的方法获取齿轮中的早期信号,实现齿轮箱的高效故障诊断。研究结果表明:仿真信号波形内形成了明显的周期故障冲击特征,采用该方法计算的Morlet小波参数极大地缩短了算法所需的时间。与CFA方法相比,该方法对原子小波参数具有更准确的识别性能,具备更强抗噪能力,算法效率也获得明显提升。该研究可以拓展到其他的机械传动系统上,具有很高的推广价值。 展开更多
关键词 齿轮箱 故障诊断 稀疏表示 morlet小波 鲸鱼优化算法
下载PDF
Selection and application of wavelet transform in high-frequency sequence stratigraphy analysis of coarse-grained sediment in rift basin
9
作者 Ling Li Zhi-Zhang Wang +4 位作者 Shun-De Yin Wei-Fang Wang Zhi-Chao Yu Wen-Tian Fan Zhi-Heng Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3016-3028,共13页
Wavelet transformation is a widely used method in high-frequency sequence stratigraphic analysis.However, the application is problematic since different wavelets always return the same sequence analysis results. To ad... Wavelet transformation is a widely used method in high-frequency sequence stratigraphic analysis.However, the application is problematic since different wavelets always return the same sequence analysis results. To address this issue, we applied five commonly used wavelets to theoretical sequence models to document some application criteria. Five gradual scale-change sequence models were simplified from the glutenite succession deposition by gravity flows to form the fining-upwards cycle sequences(FUCS) and coarsening-upwards cycle sequences(CUCS). After conducting theoretical sequence model tests, the optimal wavelet(sym4) was selected and successfully used with actual data to identify the sequence boundaries. We also proposed a new method to optimize the scale of continuous wavelet transformation(CWT) for sequence boundary determination. We found that the balloon-like marks in scalograms of db4, sym4, and coif4 wavelet determine, respectively, the fourth-order sequence boundary, the thick succession sequence boundaries in FUCS, and the thick succession sequence in FUCS and CUCS. Comparing the sequence identification results shows that the asymmetric wavelets had an advantage in high-frequency sequence boundary determination and sedimentary cycle discrimination through the amplitude trend of the coefficient, in which the sym4 wavelet is the most effective. In conclusion, the asymmetry of wavelets is the first selection principle, of which asymmetric wavelets are more sensitive to sediment deposition by flood flows. The match of the wavelet between the sequence is the second selection principle, in which the correlation of time-frequency impacts the accuracy of sequence surface localization. However, the waveform of the wavelet is a visual and abstract parameter for sequence boundary detection. The appropriate wavelet for lacustrine sequence analysis is the asymmetric wavelet with a weak number of side lobes. The depositional flows, depositional process,and autogenic are three sedimentary factors that influence the sequence analysis results. 展开更多
关键词 wavelet analysis High-resolution sequence Sedimentary cyclicity Asymmetric wavelets
下载PDF
基于Morlet小波的变电站直流电源接地故障检测方法
10
作者 张蕾 《通信电源技术》 2024年第10期136-138,共3页
为提高变电站直流电源接地故障检测查准率,提出基于Morlet小波的变电站直流电源接地故障检测方法。根据检测需求,提取接地故障信号,采用动态化采集的方式采集故障数据。基于Morlet小波设计直流电源接地故障检测模型,采用暂态处理实现故... 为提高变电站直流电源接地故障检测查准率,提出基于Morlet小波的变电站直流电源接地故障检测方法。根据检测需求,提取接地故障信号,采用动态化采集的方式采集故障数据。基于Morlet小波设计直流电源接地故障检测模型,采用暂态处理实现故障检测。测试结果表明,文章所提方法的查准率较高,能够明确检测目标,有效提升了接地故障检测模式的综合性能。 展开更多
关键词 morlet小波 变电站 直流电源 接地故障 故障检测
下载PDF
基于ICEEMDAN-SSA-Wavelet的声发射信号降噪研究 被引量:1
11
作者 姚慧栋 金永 +1 位作者 王江 李玉珠 《现代电子技术》 北大核心 2024年第5期93-97,共5页
针对粘接件声发射(AE)信号含有噪声分量难以滤除的问题,提出一种改进ICEEMDAN的方法。该方法首先使用ICEEMDAN分解原始AE信号,并通过相关系数和能量差值的方法筛选出低频分量和高频分量;运用麻雀优化算法(SSA)优化后的改进小波阈值去噪... 针对粘接件声发射(AE)信号含有噪声分量难以滤除的问题,提出一种改进ICEEMDAN的方法。该方法首先使用ICEEMDAN分解原始AE信号,并通过相关系数和能量差值的方法筛选出低频分量和高频分量;运用麻雀优化算法(SSA)优化后的改进小波阈值去噪算法对其进行去噪;最后将保留的低频分量和去噪后的高频分量重构成一个新的信号,通过实验数据对比和分析评估降噪效果。实验结果表明,相较于改进小波阈值去噪和ICEEMDAN去噪,文中提出的方法对金属与非金属粘接件AE信号的降噪效果更好,能够保护原始信号的频域信息,进而提高脱粘检测精度。 展开更多
关键词 ICEEMDAN去噪 小波阈值去噪 声发射信号 金属与非金属粘接件 SSA 信号降噪
下载PDF
Image Hiding with High Robustness Based on Dynamic Region Attention in the Wavelet Domain
12
作者 Zengxiang Li Yongchong Wu +3 位作者 Alanoud Al Mazroa Donghua Jiang Jianhua Wu Xishun Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期847-869,共23页
Hidden capacity,concealment,security,and robustness are essential indicators of hiding algorithms.Currently,hiding algorithms tend to focus on algorithmic capacity,concealment,and security but often overlook the robus... Hidden capacity,concealment,security,and robustness are essential indicators of hiding algorithms.Currently,hiding algorithms tend to focus on algorithmic capacity,concealment,and security but often overlook the robustness of the algorithms.In practical applications,the container can suffer from damage caused by noise,cropping,and other attacks during transmission,resulting in challenging or even impossible complete recovery of the secret image.An image hiding algorithm based on dynamic region attention in the multi-scale wavelet domain is proposed to address this issue and enhance the robustness of hiding algorithms.In this proposed algorithm,a secret image of size 256×256 is first decomposed using an eight-level Haar wavelet transform.The wavelet transform generates one coefficient in the approximation component and twenty-four detail bands,which are then embedded into the carrier image via a hiding network.During the recovery process,the container image is divided into four non-overlapping parts,each employed to reconstruct a low-resolution secret image.These lowresolution secret images are combined using densemodules to obtain a high-quality secret image.The experimental results showed that even under destructive attacks on the container image,the proposed algorithm is successful in recovering a high-quality secret image,indicating that the algorithm exhibits a high degree of robustness against various attacks.The proposed algorithm effectively addresses the robustness issue by incorporating both spatial and channel attention mechanisms in the multi-scale wavelet domain,making it suitable for practical applications.In conclusion,the image hiding algorithm introduced in this study offers significant improvements in robustness compared to existing algorithms.Its ability to recover high-quality secret images even in the presence of destructive attacksmakes it an attractive option for various applications.Further research and experimentation can explore the algorithm’s performance under different scenarios and expand its potential applications. 展开更多
关键词 Image hiding ROBUSTNESS wavelet transform dynamic region attention
下载PDF
WT-FCTGN:A wavelet-enhanced fully connected time-gated neural network for complex noisy traffic flow modeling
13
作者 廖志芳 孙轲 +3 位作者 刘文龙 余志武 刘承光 宋禹成 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期652-664,共13页
Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produce... Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produced during collecting information and summarizing original data of traffic flow, cause large errors in the traffic flow forecasting results. This article suggests a solution to the above mentioned issues and proposes a fully connected time-gated neural network based on wavelet reconstruction(WT-FCTGN). To eliminate the potential noise and strengthen the potential traffic trend in the data, we adopt the methods of wavelet reconstruction and periodic data introduction to preprocess the data. The model introduces fully connected time-series blocks to model all the information including time sequence information and fluctuation information in the flow of traffic, and establishes the time gate block to comprehend the periodic characteristics of the flow of traffic and predict its flow. The performance of the WT-FCTGN model is validated on the public Pe MS data set. The experimental results show that the WT-FCTGN model has higher accuracy, and its mean absolute error(MAE), mean absolute percentage error(MAPE) and root mean square error(RMSE) are obviously lower than those of the other algorithms. The robust experimental results prove that the WT-FCTGN model has good anti-noise ability. 展开更多
关键词 traffic flow modeling time-series wavelet reconstruction
下载PDF
Acoustic location echo signal extraction of buried non-metallic pipelines based on EMD and wavelet threshold joint denoising
14
作者 GE Liang YUAN Xuefeng +2 位作者 XIAO Xiaoting LUO Ping WANG Tian 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第4期417-431,共15页
In the acoustic detection process of buried non-metallic pipelines,the echo signal is often interfered by a large amount of noise,which makes it extremely difficult to effectively extract useful signals.An denoising a... In the acoustic detection process of buried non-metallic pipelines,the echo signal is often interfered by a large amount of noise,which makes it extremely difficult to effectively extract useful signals.An denoising algorithm based on empirical mode decomposition(EMD)and wavelet thresholding was proposed.This method fully considered the nonlinear and non-stationary characteristics of the echo signal,making the denoising effect more significant.Its feasibility and effectiveness were verified through numerical simulation.When the input SNR(SNRin)is between-10 dB and 10 dB,the output SNR(SNRout)of the combined denoising algorithm increases by 12.0%-34.1%compared to the wavelet thresholding method and by 19.60%-56.8%compared to the EMD denoising method.Additionally,the RMSE of the combined denoising algorithm decreases by 18.1%-48.0%compared to the wavelet thresholding method and by 22.1%-48.8%compared to the EMD denoising method.These results indicated that this joint denoising algorithm could not only effectively reduce noise interference,but also significantly improve the positioning accuracy of acoustic detection.The research results could provide technical support for denoising the echo signals of buried non-metallic pipelines,which was conducive to improving the acoustic detection and positioning accuracy of underground non-metallic pipelines. 展开更多
关键词 buried non-metallic pipeline acoustic positioning signal processing optimal decomposition scale wavelet basis function EMD combined wavelet threshold algorithm
下载PDF
Olive Leaf Disease Detection via Wavelet Transform and Feature Fusion of Pre-Trained Deep Learning Models
15
作者 Mahmood A.Mahmood Khalaf Alsalem 《Computers, Materials & Continua》 SCIE EI 2024年第3期3431-3448,共18页
Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wa... Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wavelet,feature-fused,pre-trained deep learning model for detecting olive leaf diseases.The proposed model combines wavelet transforms with pre-trained deep-learning models to extract discriminative features from olive leaf images.The model has four main phases:preprocessing using data augmentation,three-level wavelet transformation,learning using pre-trained deep learning models,and a fused deep learning model.In the preprocessing phase,the image dataset is augmented using techniques such as resizing,rescaling,flipping,rotation,zooming,and contrasting.In wavelet transformation,the augmented images are decomposed into three frequency levels.Three pre-trained deep learning models,EfficientNet-B7,DenseNet-201,and ResNet-152-V2,are used in the learning phase.The models were trained using the approximate images of the third-level sub-band of the wavelet transform.In the fused phase,the fused model consists of a merge layer,three dense layers,and two dropout layers.The proposed model was evaluated using a dataset of images of healthy and infected olive leaves.It achieved an accuracy of 99.72%in the diagnosis of olive leaf diseases,which exceeds the accuracy of other methods reported in the literature.This finding suggests that our proposed method is a promising tool for the early detection of olive leaf diseases. 展开更多
关键词 Olive leaf diseases wavelet transform deep learning feature fusion
下载PDF
A lightweight symmetric image encryption cryptosystem in wavelet domain based on an improved sine map
16
作者 陈柏池 黄林青 +2 位作者 蔡述庭 熊晓明 张慧 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期266-276,共11页
In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive ... In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive image.In this paper,an improved sine map(ISM)possessing a larger chaotic region,more complex chaotic behavior and greater unpredictability is proposed and extensively tested.Drawing upon the strengths of ISM,we introduce a lightweight symmetric image encryption cryptosystem in wavelet domain(WDLIC).The WDLIC employs selective encryption to strike a satisfactory balance between security and speed.Initially,only the low-frequency-low-frequency component is chosen to encrypt utilizing classic permutation and diffusion.Then leveraging the statistical properties in wavelet domain,Gaussianization operation which opens the minds of encrypting image information in wavelet domain is first proposed and employed to all sub-bands.Simulations and theoretical analysis demonstrate the high speed and the remarkable effectiveness of WDLIC. 展开更多
关键词 image encryption discrete wavelet transform 1D-chaotic system selective encryption Gaussianization operation
下载PDF
Enhanced Fourier Transform Using Wavelet Packet Decomposition
17
作者 Wouladje Cabrel Golden Tendekai Mumanikidzwa +1 位作者 Jianguo Shen Yutong Yan 《Journal of Sensor Technology》 2024年第1期1-15,共15页
Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti... Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method. 展开更多
关键词 Fourier Transform wavelet Packet Decomposition Time-Frequency Analysis Non-Stationary Signals
下载PDF
Deep neural network based on multi-level wavelet and attention for structured illumination microscopy
18
作者 Yanwei Zhang Song Lang +2 位作者 Xuan Cao Hanqing Zheng Yan Gong 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第2期12-23,共12页
Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior know... Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems. 展开更多
关键词 Super-resolution reconstruction multi-level wavelet packet transform residual channel attention selective kernel attention
下载PDF
AMicroseismic Signal Denoising Algorithm Combining VMD and Wavelet Threshold Denoising Optimized by BWOA
19
作者 Dijun Rao Min Huang +2 位作者 Xiuzhi Shi Zhi Yu Zhengxiang He 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期187-217,共31页
The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized ... The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized VariationalMode Decomposition(VMD)jointWavelet Threshold Denoising(WTD)algorithm(BVW)is proposed.The BVW algorithm integrates VMD and WTD,both of which are optimized by BWOA.Specifically,this algorithm utilizes VMD to decompose the microseismic signal to be denoised into several Band-Limited IntrinsicMode Functions(BLIMFs).Subsequently,these BLIMFs whose correlation coefficients with the microseismic signal to be denoised are higher than a threshold are selected as the effective mode functions,and the effective mode functions are denoised using WTD to filter out the residual low-and intermediate-frequency noise.Finally,the denoised microseismic signal is obtained through reconstruction.The ideal values of VMD parameters and WTD parameters are acquired by searching with BWOA to achieve the best VMD decomposition performance and solve the problem of relying on experience and requiring a large workload in the application of the WTD algorithm.The outcomes of simulated experiments indicate that this algorithm is capable of achieving good denoising performance under noise of different intensities,and the denoising performance is significantly better than the commonly used VMD and Empirical Mode Decomposition(EMD)algorithms.The BVW algorithm is more efficient in filtering noise,the waveform after denoising is smoother,the amplitude of the waveform is the closest to the original signal,and the signal-to-noise ratio(SNR)and the root mean square error after denoising are more satisfying.The case based on Fankou Lead-Zinc Mine shows that for microseismic signals with different intensities of noise monitored on-site,compared with VMD and EMD,the BVW algorithm ismore efficient in filtering noise,and the SNR after denoising is higher. 展开更多
关键词 Variational mode decomposition microseismic signal DENOISING wavelet threshold denoising black widow optimization algorithm
下载PDF
Research on the longitudinal protection of a through-type cophase traction direct power supply system based on the empirical wavelet transform
20
作者 Lu Li Zeduan Zhang +5 位作者 Wang Cai Qikang Zhuang Guihong Bi Jian Deng Shilong Chen Xiaorui Kan 《Global Energy Interconnection》 EI CSCD 2024年第2期206-216,共11页
This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a disti... This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances. 展开更多
关键词 Through-type Cophase traction direct power supply system Traction network Empirical wavelet transform(EWT) Longitudinal protection
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部