Studies on urban energy have been growing in interest,and past research has mostly been focused on studies of urban solar potential or urban building energy consumption independently.However,holistic research on the c...Studies on urban energy have been growing in interest,and past research has mostly been focused on studies of urban solar potential or urban building energy consumption independently.However,holistic research on the combination of urban building energy consumption and solar potential at the urban block-scale is required in order to minimize energy use and maximize solar power generation simultaneously.The aim of this study is to comprehensively evaluate the impact of urban morphological factors on photovoltaic(PV)potential and building energy consumption.Firstly,58 residential blocks were classified into 6 categories by k-means clustering.Secondly,3 energy performance factors,which include the energy use intensity(EUI),the energy use intensity combined with PV potential(EUI-PV),and photovoltaic substitution rate(PSR)were calculated for these blocks.The study found that the EUI of the Small Length&High Height blocks was the lowest at around 30 kWh/(m^(2)·y),while the EUI-PV of the Small Length&Low Height blocks was the lowest at around 4.45 kWh/(m^(2)·y),and their PSR was the highest at 87%.Regression modelling was carried out,and the study concluded that the EUI of residential blocks was mainly affected by shape factor,building density and floor area ratio,while EUI-PV and PSR were mainly affected by height and sky view factor.In this study,the results and developed methodology are helpful to provide recommendations and strategies for sustainable planning of residential blocks in central China.展开更多
The plane form of a gully can provide a basis for evaluating the gully volume and erosion rate, acting process, and evolutionary stage. For describing the planar characteristics of a permanent gully and understanding ...The plane form of a gully can provide a basis for evaluating the gully volume and erosion rate, acting process, and evolutionary stage. For describing the planar characteristics of a permanent gully and understanding their controlling factors, this study, utilizing a total station and GPS RTK, measured the shoulder lines and channel curves of 112 gullies in six sites of the Yuanmou Dry-hot Valley and then mapped them by Arc GIS software and calculated nine parameters. The results showed that the channel lengths range from 10.88 to 249.11 m; the widths range from 6.20 to 40.99 m; the perimeters range from 54.11 to 541.67 m; the gully areas range from 153.02 to 6,930.30 m2; the left-side areas range from 92.93 to 4,027.20 m2; and the right-side areas range from 63.65 to 3,539.77 m2. The slightly sinuous and straight gullies account for 73.21% of the total gullies; the quantity of the right skewed gullies is 8.93% greater than that of the left skewed ones based on the symmetry ratio; the shape ratios range from 1.12 to 1.40 and the morphology ratios from 0.038 to 1.294; the fractal dimension is 1.192. Gullies in different sites have diverse planar characteristics. Except for the symmetry index, which was close to a negatively skewed distribution, all of the other parameters had the characteristic of positively skewed distribution. The gully area is related to the length and width, but the gully length has a weak correlation with the width. The evolutionary stage, topographic conditions, strata, soil properties, and piping erosion played very important roles in the gully planar morphology. This study could provide useful information for controlling gully erosion and safeguarding human habitation and engineering buildings.展开更多
Myelin basic protein(MBP) is an essential structure involved in the generation of central nervous system(CNS)myelin.Myelin shape has been described as liquid crystal structure of biological membrane.The interactio...Myelin basic protein(MBP) is an essential structure involved in the generation of central nervous system(CNS)myelin.Myelin shape has been described as liquid crystal structure of biological membrane.The interactions of MBP with monolayers of different lipid compositions are responsible for the multi-lamellar structure and stability of myelin.In this paper,we have designed MBP-incorporated model lipid monolayers and studied the phase behavior of MBP adsorbed on the plasma membrane at the air/water interface by thermodynamic method and atomic force microscopy(AFM).By analyzing the pressure–area(π–A) and pressure–time(π–T) isotherms,univariate linear regression equation was obtained.In addition,the elastic modulus,surface pressure increase,maximal insertion pressure,and synergy factor of monolayers were detected.These parameters can be used to modulate the monolayers binding of protein,and the results show that MBP has the strongest affinity for 1,2-dipalmitoyl-sn-glycero-3-phosphoserine(DPPS) monolayer,followed by DPPC/DPPS mixed and1,2-dipalmitoyl-sn-glycero-3-phospho-choline(DPPC) monolayers via electrostatic and hydrophobic interactions.AFM images of DPPS and DPPC/DPPS mixed monolayers in the presence of MBP(5 n M) show a phase separation texture at the surface pressure of 20 m N/m and the incorporation of MBP put into the DPPC monolayers has exerted a significant effect on the domain structure.MBP is not an integral membrane protein but,due to its positive charge,interacts with the lipid head groups and stabilizes the membranes.The interaction between MBP and phospholipid membrane to determine the nervous system of the disease has a good biophysical significance and medical value.展开更多
Urban morphology and morphology change and their impacts on urban transportation have been studied extensively in planar urban space.The essential feature of urban space,however,is its three-dimensionality(3D),and few...Urban morphology and morphology change and their impacts on urban transportation have been studied extensively in planar urban space.The essential feature of urban space,however,is its three-dimensionality(3D),and few studies have been conducted from a 3D perspective,overly limiting the accuracy of studies on the relationships between urban morphology and transportation.The aim of this paper is to simulate the impacts of 3D urban morphologies on urban transportation under the Digital Earth framework.On the basis of the principle that population distribution and movement are largely confined by 3D urban morphologies,which affect transportation,high spatial resolution remote sensing imagery and a thematic vector data-set were used to extract urban morphology and transportation-related variables.With a combination of three research methods-factor analysis,spatial regression analysis and Euclidean allocation-we provide an effective method to construct a simulation model.The paper indicates three general results.First,building capacity in the urban space has the most significant impact on traffic condition.Second,obvious urban space otherness,reflecting both use density characteristics and functional character-istics of urban space,mostly results in heavier traffic flow pressure.Third,no single morphology density indicator or single urban structure indicator can reflect its contribution to the pressure of traffic flow directly,but a combination of these different indicators has the ability to do so.展开更多
基金This research was supported by the program for HUST Academic Frontier Youth Team(No.2019QYTD10)the Fundamental Research Funds for the Central Universities(No.2019kfyXKJC029)the National Natural Science Foundation of China(No.51678261,No.51978296).
文摘Studies on urban energy have been growing in interest,and past research has mostly been focused on studies of urban solar potential or urban building energy consumption independently.However,holistic research on the combination of urban building energy consumption and solar potential at the urban block-scale is required in order to minimize energy use and maximize solar power generation simultaneously.The aim of this study is to comprehensively evaluate the impact of urban morphological factors on photovoltaic(PV)potential and building energy consumption.Firstly,58 residential blocks were classified into 6 categories by k-means clustering.Secondly,3 energy performance factors,which include the energy use intensity(EUI),the energy use intensity combined with PV potential(EUI-PV),and photovoltaic substitution rate(PSR)were calculated for these blocks.The study found that the EUI of the Small Length&High Height blocks was the lowest at around 30 kWh/(m^(2)·y),while the EUI-PV of the Small Length&Low Height blocks was the lowest at around 4.45 kWh/(m^(2)·y),and their PSR was the highest at 87%.Regression modelling was carried out,and the study concluded that the EUI of residential blocks was mainly affected by shape factor,building density and floor area ratio,while EUI-PV and PSR were mainly affected by height and sky view factor.In this study,the results and developed methodology are helpful to provide recommendations and strategies for sustainable planning of residential blocks in central China.
基金funded by the National Natural Science Foundation of China (41101348)
文摘The plane form of a gully can provide a basis for evaluating the gully volume and erosion rate, acting process, and evolutionary stage. For describing the planar characteristics of a permanent gully and understanding their controlling factors, this study, utilizing a total station and GPS RTK, measured the shoulder lines and channel curves of 112 gullies in six sites of the Yuanmou Dry-hot Valley and then mapped them by Arc GIS software and calculated nine parameters. The results showed that the channel lengths range from 10.88 to 249.11 m; the widths range from 6.20 to 40.99 m; the perimeters range from 54.11 to 541.67 m; the gully areas range from 153.02 to 6,930.30 m2; the left-side areas range from 92.93 to 4,027.20 m2; and the right-side areas range from 63.65 to 3,539.77 m2. The slightly sinuous and straight gullies account for 73.21% of the total gullies; the quantity of the right skewed gullies is 8.93% greater than that of the left skewed ones based on the symmetry ratio; the shape ratios range from 1.12 to 1.40 and the morphology ratios from 0.038 to 1.294; the fractal dimension is 1.192. Gullies in different sites have diverse planar characteristics. Except for the symmetry index, which was close to a negatively skewed distribution, all of the other parameters had the characteristic of positively skewed distribution. The gully area is related to the length and width, but the gully length has a weak correlation with the width. The evolutionary stage, topographic conditions, strata, soil properties, and piping erosion played very important roles in the gully planar morphology. This study could provide useful information for controlling gully erosion and safeguarding human habitation and engineering buildings.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21402114 and 11544009)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2016JM2010)+1 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.GK201604004)the National University Science and Technology Innovation Project of China(Grant Nos.201610718014 and cx16018)
文摘Myelin basic protein(MBP) is an essential structure involved in the generation of central nervous system(CNS)myelin.Myelin shape has been described as liquid crystal structure of biological membrane.The interactions of MBP with monolayers of different lipid compositions are responsible for the multi-lamellar structure and stability of myelin.In this paper,we have designed MBP-incorporated model lipid monolayers and studied the phase behavior of MBP adsorbed on the plasma membrane at the air/water interface by thermodynamic method and atomic force microscopy(AFM).By analyzing the pressure–area(π–A) and pressure–time(π–T) isotherms,univariate linear regression equation was obtained.In addition,the elastic modulus,surface pressure increase,maximal insertion pressure,and synergy factor of monolayers were detected.These parameters can be used to modulate the monolayers binding of protein,and the results show that MBP has the strongest affinity for 1,2-dipalmitoyl-sn-glycero-3-phosphoserine(DPPS) monolayer,followed by DPPC/DPPS mixed and1,2-dipalmitoyl-sn-glycero-3-phospho-choline(DPPC) monolayers via electrostatic and hydrophobic interactions.AFM images of DPPS and DPPC/DPPS mixed monolayers in the presence of MBP(5 n M) show a phase separation texture at the surface pressure of 20 m N/m and the incorporation of MBP put into the DPPC monolayers has exerted a significant effect on the domain structure.MBP is not an integral membrane protein but,due to its positive charge,interacts with the lipid head groups and stabilizes the membranes.The interaction between MBP and phospholipid membrane to determine the nervous system of the disease has a good biophysical significance and medical value.
基金This research is supported by National Basic Research Program of China(973 Program,No.2009CB723906)National Natural Science Foundation of China(No.41001267)The author would also like to acknowledge the anonymous reviewers helped to improve this article.
文摘Urban morphology and morphology change and their impacts on urban transportation have been studied extensively in planar urban space.The essential feature of urban space,however,is its three-dimensionality(3D),and few studies have been conducted from a 3D perspective,overly limiting the accuracy of studies on the relationships between urban morphology and transportation.The aim of this paper is to simulate the impacts of 3D urban morphologies on urban transportation under the Digital Earth framework.On the basis of the principle that population distribution and movement are largely confined by 3D urban morphologies,which affect transportation,high spatial resolution remote sensing imagery and a thematic vector data-set were used to extract urban morphology and transportation-related variables.With a combination of three research methods-factor analysis,spatial regression analysis and Euclidean allocation-we provide an effective method to construct a simulation model.The paper indicates three general results.First,building capacity in the urban space has the most significant impact on traffic condition.Second,obvious urban space otherness,reflecting both use density characteristics and functional character-istics of urban space,mostly results in heavier traffic flow pressure.Third,no single morphology density indicator or single urban structure indicator can reflect its contribution to the pressure of traffic flow directly,but a combination of these different indicators has the ability to do so.