We establish a general mapping from one-dimensional non-Hermitian mosaic models to their non-mosaic counterparts.This mapping can give rise to mobility edges and even Lyapunov exponents in the mosaic models if critica...We establish a general mapping from one-dimensional non-Hermitian mosaic models to their non-mosaic counterparts.This mapping can give rise to mobility edges and even Lyapunov exponents in the mosaic models if critical points of localization or Lyapunov exponents of localized states in the corresponding non-mosaic models have already been analytically solved.To demonstrate the validity of this mapping,we apply it to two non-Hermitian localization models:an Aubry-Andre-like model with nonreciprocal hopping and complex quasiperiodic potentials,and the Ganeshan-Pixley-Das Sarma model with nonreciprocal hopping.We successfully obtain the mobility edges and Lyapunov exponents in their mosaic models.This general mapping may catalyze further studies on mobility edges,Lyapunov exponents,and other significant quantities pertaining to localization in non-Hermitian mosaic models.展开更多
北极气候研究多学科漂流观测计划(Multidisciplinary drifting Observatory for the Study of Arctic Climate, MOSAiC)于2019年10月至2020年9月开展,期间获得了变量完整的大气、海洋、海冰厚度及积雪厚度观测,为海冰模式的发展提供了...北极气候研究多学科漂流观测计划(Multidisciplinary drifting Observatory for the Study of Arctic Climate, MOSAiC)于2019年10月至2020年9月开展,期间获得了变量完整的大气、海洋、海冰厚度及积雪厚度观测,为海冰模式的发展提供了新的契机。本研究利用两个完整观测时段(2019年11月1日至2020年5月7日、2020年6月26日至7月27日)的大气和海洋强迫场,驱动一维海冰柱模式ICEPACK,模拟了MOSAiC期间海冰厚度的季节演变,同海冰厚度观测进行了对比,并诊断分析了海冰厚度模拟误差的原因。结果表明,在冬春季节,模式可以再现海冰厚度增长过程,但由于模式在春季高估了积雪向海冰的转化及对海冰物质平衡的贡献,模拟的春季海冰厚度偏厚。在夏季期间,2种热力学方案及3种融池方案的组合都表明模式高估了海冰表层的消融过程,导致模拟结束阶段的海冰厚度偏薄。我们的研究表明,使用变量完整的MOSAiC大气和海洋强迫场可以诊断目前海冰模式中的问题,为海冰模式的改进奠定基础。展开更多
基金the National Natural Science Foundation of China(Grant No.12204406)the National Key Research and Development Program of China(Grant No.2022YFA1405304)the Guangdong Provincial Key Laboratory(Grant No.2020B1212060066)。
文摘We establish a general mapping from one-dimensional non-Hermitian mosaic models to their non-mosaic counterparts.This mapping can give rise to mobility edges and even Lyapunov exponents in the mosaic models if critical points of localization or Lyapunov exponents of localized states in the corresponding non-mosaic models have already been analytically solved.To demonstrate the validity of this mapping,we apply it to two non-Hermitian localization models:an Aubry-Andre-like model with nonreciprocal hopping and complex quasiperiodic potentials,and the Ganeshan-Pixley-Das Sarma model with nonreciprocal hopping.We successfully obtain the mobility edges and Lyapunov exponents in their mosaic models.This general mapping may catalyze further studies on mobility edges,Lyapunov exponents,and other significant quantities pertaining to localization in non-Hermitian mosaic models.
文摘北极气候研究多学科漂流观测计划(Multidisciplinary drifting Observatory for the Study of Arctic Climate, MOSAiC)于2019年10月至2020年9月开展,期间获得了变量完整的大气、海洋、海冰厚度及积雪厚度观测,为海冰模式的发展提供了新的契机。本研究利用两个完整观测时段(2019年11月1日至2020年5月7日、2020年6月26日至7月27日)的大气和海洋强迫场,驱动一维海冰柱模式ICEPACK,模拟了MOSAiC期间海冰厚度的季节演变,同海冰厚度观测进行了对比,并诊断分析了海冰厚度模拟误差的原因。结果表明,在冬春季节,模式可以再现海冰厚度增长过程,但由于模式在春季高估了积雪向海冰的转化及对海冰物质平衡的贡献,模拟的春季海冰厚度偏厚。在夏季期间,2种热力学方案及3种融池方案的组合都表明模式高估了海冰表层的消融过程,导致模拟结束阶段的海冰厚度偏薄。我们的研究表明,使用变量完整的MOSAiC大气和海洋强迫场可以诊断目前海冰模式中的问题,为海冰模式的改进奠定基础。