期刊文献+
共找到406,368篇文章
< 1 2 250 >
每页显示 20 50 100
Mosquito vector management with botanicals-the most effective weapons in controlling mosquito-borne diseases 被引量:2
1
作者 Shyamapada Mandal 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2012年第4期336-336,共1页
Dear editor,Mosquito-borne diseases,viz.,malaria,filariasis,dengue hemorrhagic fever,chikungunya,Japanese encephalitis etc.,created huge impact on humans over the world,and the chemical insecticides remain the mainsta... Dear editor,Mosquito-borne diseases,viz.,malaria,filariasis,dengue hemorrhagic fever,chikungunya,Japanese encephalitis etc.,created huge impact on humans over the world,and the chemical insecticides remain the mainstay of effective control.But,indiscriminate and rampant use of the chemical insecticides in controlling mosquito vectors,in order to prevent diseases vectored by them,has resulted problems related to the adverse environmental effects for their(insecticides)potential toxicity,high operational cost,community acceptance,and the development of insecticide resistance among the vectors.The factors mentioned above prompted the search for new means of control strategies.Currently,the botanicals(viz.,plant extracts,essential oils and phytochemicals)with mosquitocidal potential 展开更多
关键词 ppm LC Mosquito vector management with botanicals-the most effective weapons in controlling mosquito-borne diseases
下载PDF
Integrated Surveillance Method of Mosquitoes and Mosquito-borne Diseases
2
作者 郭燕 柳小青 +1 位作者 马红梅 郭学俭 《Agricultural Science & Technology》 CAS 2013年第11期1572-1574,共3页
Monitoring on vector-borne virus lays foundation for control of vector-borne disease, and a scientific and highly-efficient surveil ance method is of great signifi-cance for prevention and control ing of vector-borne ... Monitoring on vector-borne virus lays foundation for control of vector-borne disease, and a scientific and highly-efficient surveil ance method is of great signifi-cance for prevention and control ing of vector-borne diseases. The research sum-marized mosquito and mosquito-borne disease monitoring methods and proposed problems in the monitoring system, as wel as introducing new monitoring methods at home and abroad, providing references for improvements of integrated surveil-lance of mosquito or mosquito-borne viruses. 展开更多
关键词 I^osquito mosquito-borne virus Integrated monitoring
下载PDF
Neem by-products in the fight against mosquito-borne diseases:Biotoxicity of neem cake fractions towards the rural malaria vector Anopheles culicifacies(Diptera:Culicidae) 被引量:1
3
作者 Balamurugan Chandramohan Kadarkarai Murugan +9 位作者 Pari Madhiyazhagan Kalimuthu Kovendan Palanisamy Mahesh Kumar Chellasamy Panneerselvam Devakumar Dinesh Jayapal Subramaniam Rajapandian Rajaganesh Marcello Nicoletti Angelo Canale Giovanni Benelli 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2016年第6期472-476,共5页
Objective: To evaluate the ovicidal, larvicidal and adulticidal potential of neem cake fractions of different polarity against the rural malaria vector Anopheles culicifacies(An.culicifacies).Methods: Neem cake fracti... Objective: To evaluate the ovicidal, larvicidal and adulticidal potential of neem cake fractions of different polarity against the rural malaria vector Anopheles culicifacies(An.culicifacies).Methods: Neem cake fractions' total methanol extract(NTMeOH), total ethyl acetate extract(NTAc OEt), ethyl acetate fraction after repartition with NTMe OH(NRAc OEt),butanol fraction after repartition with NTMeOH(NRBuOH), and aqueous fraction after repartition of NTMeOH(NRH2O) were tested against An. culicifacies eggs, fourth instar larvae and adults.Results: In larvicidal experiments, NTMeOH, NTAcOEt, NRAcOEt, NRBuOH and NRH2O achieved LC50 values of 1.32, 1.50, 1.81, 1.95 and 2.54 mg/L, respectively. All fractions tested at 150 mg/L were able to reduce egg hatchability of more than 50%, with the exception of NTAc OEt and NRAc OEt. In adulticidal assays, NTMeOH, NTAcOEt,NRAcOEt, NRBuOH and NRH2O achieved LC50 values of 3.01, 2.95, 3.23, 3.63 and3.00 mg/L, respectively.Conclusions: Overall, this study suggests that the methanolic fractions of neem cake may be considered as a new and cheap source of highly effective compounds against the rural malaria vector An. culicifacies. 展开更多
关键词 ARBOVIRUS AZADIRACHTA indica BIOSAFETY BOTANICAL by-products Eco-friendly pesticides mosquito-borne diseases
下载PDF
Mosquito-borne diseases:Assessing risk and strategies to control their spread in the Middle East 被引量:1
4
作者 Laith AL-Eitan Malek Alnemri +2 位作者 Haneen Ali Mishael Alkhawaldeh Ahmad Mihyar 《Journal of Biosafety and Biosecurity》 2024年第1期1-12,共12页
Mosquito-borne diseases(MBDs),like malaria and mosquito-borne viruses(MBVs),have caused the deaths of millions of people.Their threat resides in the variety of transmission modes that they possess,along with the wide ... Mosquito-borne diseases(MBDs),like malaria and mosquito-borne viruses(MBVs),have caused the deaths of millions of people.Their threat resides in the variety of transmission modes that they possess,along with the wide selection of favorable hosts,such as humans,cattle,and rodents.MBDs are increasingly gaining a reputation as one of the most dangerous threats to public health in recent years.Mosquito numbers have been increasing in recent years as a result of multiple factors such as climate change and deforestation.This situation highlights the urgent need for actions to mitigate mosquito and MBD pathogen distributions.In the Middle East,many outbreaks of MBDs have been reported in the region.However,there are no reports of any endemic episodes of MBDs.The Middle East has faced many challenges over the years;however,the Syrian refugee crisis may be strongly related to the spread of infectious diseases.As mass gatherings and high-density populations are common features in the region,it is possible to understand why MBDs can spread easily.This review summarizes the state of MBDs in the Middle East,highlighting the different types of MBDs that have been reported in the region and discussing how to move forward with controlling their spread and limiting the risks they pose.According to the data reported by the electronic State Parties Self-Assessment Annual Reporting Tool(e-SPAR),the capacity to anticipate MBVs varies among Middle East countries.Therefore,the Middle East is on the frontline in the challenge to control a potential public health crisis.Consequently,the countries of the Middle East should be encouraged to improve their health and research capacities to mitigate the threat posed by MBDs. 展开更多
关键词 mosquito-borne viruses Middle East mosquito-borne diseases Biosafety and Biosecurity
原文传递
A Review of the Latest Control Strategies for Mosquito-Borne Diseases
5
作者 Jing Ni Jinna Wang +2 位作者 Chunfu Fang Wenrong Zhang Zhenyu Gong 《China CDC weekly》 SCIE CSCD 2024年第33期852-856,共5页
Mosquito-borne diseases are persistent and potentially severe posing a threat to global pandemic preparedness.The risk of mosquito-borne virus transmission is rapidly increasing due to the unprecedented spread of viru... Mosquito-borne diseases are persistent and potentially severe posing a threat to global pandemic preparedness.The risk of mosquito-borne virus transmission is rapidly increasing due to the unprecedented spread of viruses such as dengue and chikungunya,the disruption of global mosquito-borne disease control efforts following the emergence of coronavirus diseases 2019(COVID-19)in 2019,global warming,and human activities.To address this global challenge,various innovative mosquito control technologies are being developed worldwide.This paper summarizes the latest advances in mosquito vector control,focusing on China’s latest mosquito control strategies,to provide insights into implementing novel mosquito-borne disease control measures. 展开更多
关键词 diseases WARMING INSIGHT
原文传递
Copper homeostasis and neurodegenerative diseases
6
作者 Yuanyuan Wang Daidi Li +2 位作者 Kaifei Xu Guoqing Wang Feng Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第11期3124-3143,共20页
Copper,one of the most prolific transition metals in the body,is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations.Copper homeostasis is... Copper,one of the most prolific transition metals in the body,is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations.Copper homeostasis is meticulously maintained through a complex network of copper-dependent proteins,including copper transporters(CTR1 and CTR2),the two copper ion transporters the Cu-transporting ATPase 1(ATP7A)and Cu-transporting beta(ATP7B),and the three copper chaperones ATOX1,CCS,and COX17.Disruptions in copper homeostasis can lead to either the deficiency or accumulation of copper in brain tissue.Emerging evidence suggests that abnormal copper metabolism or copper binding to various proteins,including ceruloplasmin and metallothionein,is involved in the pathogenesis of neurodegenerative disorders.However,the exact mechanisms underlying these processes are not known.Copper is a potent oxidant that increases reactive oxygen species production and promotes oxidative stress.Elevated reactive oxygen species levels may further compromise mitochondrial integrity and cause mitochondrial dysfunction.Reactive oxygen species serve as key signaling molecules in copper-induced neuroinflammation,with elevated levels activating several critical inflammatory pathways.Additionally,copper can bind aberrantly to several neuronal proteins,including alphasynuclein,tau,superoxide dismutase 1,and huntingtin,thereby inducing neurotoxicity and ultimately cell death.This study focuses on the latest literature evaluating the role of copper in neurodegenerative diseases,with a particular focus on copper-containing metalloenzymes and copper-binding proteins in the regulation of copper homeostasis and their involvement in neurodegenerative disease pathogenesis.By synthesizing the current findings on the functions of copper in oxidative stress,neuroinflammation,mitochondrial dysfunction,and protein misfolding,we aim to elucidate the mechanisms by which copper contributes to a wide range of hereditary and neuronal disorders,such as Wilson's disease,Menkes'disease,Alzheimer's disease,Parkinson's disease,amyotrophic lateral sclerosis,Huntington's disease,and multiple sclerosis.Potential clinically significant therapeutic targets,including superoxide dismutase 1,D-penicillamine,and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline,along with their associated therapeutic agents,are further discussed.Ultimately,we collate evidence that copper homeostasis may function in the underlying etiology of several neurodegenerative diseases and offer novel insights into the potential prevention and treatment of these diseases based on copper homeostasis. 展开更多
关键词 Alzheimer's disease amyotrophic lateral sclerosis disease copper homeostasis copper toxicity Huntington's disease Menkes'disease multiple sclerosis neurodegenerative disease Parkinson's disease Wilson's disease
下载PDF
Toward understanding the role of genomic repeat elements in neurodegenerative diseases
7
作者 Zhengyu An Aidi Jiang Jingqi Chen 《Neural Regeneration Research》 SCIE CAS 2025年第3期646-659,共14页
Neurodegenerative diseases cause great medical and economic burdens for both patients and society;however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage se... Neurodegenerative diseases cause great medical and economic burdens for both patients and society;however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage sequencing technology, researchers have started to notice that genomic repeat regions, previously neglected in search of disease culprits, are active contributors to multiple neurodegenerative diseases. In this review, we describe the association between repeat element variants and multiple degenerative diseases through genome-wide association studies and targeted sequencing. We discuss the identification of disease-relevant repeat element variants, further powered by the advancement of long-read sequencing technologies and their related tools, and summarize recent findings in the molecular mechanisms of repeat element variants in brain degeneration, such as those causing transcriptional silencing or RNA-mediated gain of toxic function. Furthermore, we describe how in silico predictions using innovative computational models, such as deep learning language models, could enhance and accelerate our understanding of the functional impact of repeat element variants. Finally, we discuss future directions to advance current findings for a better understanding of neurodegenerative diseases and the clinical applications of genomic repeat elements. 展开更多
关键词 Alzheimer's disease ATAXIA deep learning long-read sequencing NEURODEGENERATION neurodegenerative diseases Parkinson's disease repeat element structural variant
下载PDF
Pyrroloquinoline quinone:a potential neuroprotective compound for neurodegenerative diseases targeting metabolism
8
作者 Alessio Canovai Pete A.Williams 《Neural Regeneration Research》 SCIE CAS 2025年第1期41-53,共13页
Pyrroloquinoline quinone is a quinone described as a cofactor for many bacterial dehydrogenases and is reported to exert an effect on metabolism in mammalian cells/tissues.Pyrroloquinoline quinone is present in the di... Pyrroloquinoline quinone is a quinone described as a cofactor for many bacterial dehydrogenases and is reported to exert an effect on metabolism in mammalian cells/tissues.Pyrroloquinoline quinone is present in the diet being available in foodstuffs,conferring the potential of this compound to be supplemented by dietary administration.Pyrroloquinoline quinone’s nutritional role in mammalian health is supported by the extensive deficits in reproduction,growth,and immunity resulting from the dietary absence of pyrroloquinoline quinone,and as such,pyrroloquinoline quinone has been considered as a“new vitamin.”Although the classification of pyrroloquinoline quinone as a vitamin needs to be properly established,the wide range of benefits for health provided has been reported in many studies.In this respect,pyrroloquinoline quinone seems to be particularly involved in regulating cell signaling pathways that promote metabolic and mitochondrial processes in many experimental contexts,thus dictating the rationale to consider pyrroloquinoline quinone as a vital compound for mammalian life.Through the regulation of different metabolic mechanisms,pyrroloquinoline quinone may improve clinical deficits where dysfunctional metabolism and mitochondrial activity contribute to induce cell damage and death.Pyrroloquinoline quinone has been demonstrated to have neuroprotective properties in different experimental models of neurodegeneration,although the link between pyrroloquinoline quinone-promoted metabolism and improved neuronal viability in some of such contexts is still to be fully elucidated.Here,we review the general properties of pyrroloquinoline quinone and its capacity to modulate metabolic and mitochondrial mechanisms in physiological contexts.In addition,we analyze the neuroprotective properties of pyrroloquinoline quinone in different neurodegenerative conditions and consider future perspectives for pyrroloquinoline quinone’s potential in health and disease. 展开更多
关键词 METABOLISM MITOCHONDRIA neurodegenerative disease NEUROPROTECTION pyrroloquinoline quinone retinal diseases
下载PDF
Targeting capabilities of engineered extracellular vesicles for the treatment of neurological diseases
9
作者 Xinyu Yang Xiangyu Gao +2 位作者 Xiaofan Jiang Kangyi Yue Peng Luo 《Neural Regeneration Research》 SCIE CAS 2025年第11期3076-3094,共19页
Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–b... Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–brain barrier,extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions,including ischemic stroke,traumatic brain injury,neurodegenerative diseases,glioma,and psychosis.However,the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body.To address these limitations,multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles,thereby enabling the delivery of therapeutic contents to specific tissues or cells.Therefore,this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles,exploring their applications in treating traumatic brain injury,ischemic stroke,Parkinson's disease,Alzheimer's disease,amyotrophic lateral sclerosis,glioma,and psychosis.Additionally,we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases.This review offers new insights for developing highly targeted therapies in this field. 展开更多
关键词 Alzheimer's disease amyotrophic lateral sclerosis engineered extracellular vesicles GLIOMA ischemic stroke neurological diseases Parkinson's disease PSYCHOSIS targeted drug delivery traumatic brain injury
下载PDF
Neuronal regulated cell death in aging-related neurodegenerative diseases:key pathways and therapeutic potentials
10
作者 Run Song Shiyi Yin +1 位作者 Jiannan Wu Junqiang Yan 《Neural Regeneration Research》 SCIE CAS 2025年第8期2245-2263,共19页
Regulated cell death(such as apoptosis,necroptosis,pyroptosis,autophagy,cuproptosis,ferroptosis,disulfidptosis)involves complex signaling pathways and molecular effectors,and has been proven to be an important regulat... Regulated cell death(such as apoptosis,necroptosis,pyroptosis,autophagy,cuproptosis,ferroptosis,disulfidptosis)involves complex signaling pathways and molecular effectors,and has been proven to be an important regulatory mechanism for regulating neuronal aging and death.However,excessive activation of regulated cell death may lead to the progression of aging-related diseases.This review summarizes recent advances in the understanding of seven forms of regulated cell death in age-related diseases.Notably,the newly identified ferroptosis and cuproptosis have been implicated in the risk of cognitive impairment and neurodegenerative diseases.These forms of cell death exacerbate disease progression by promoting inflammation,oxidative stress,and pathological protein aggregation.The review also provides an overview of key signaling pathways and crosstalk mechanisms among these regulated cell death forms,with a focus on ferroptosis,cuproptosis,and disulfidptosis.For instance,FDX1 directly induces cuproptosis by regulating copper ion valency and dihydrolipoamide S-acetyltransferase aggregation,while copper mediates glutathione peroxidase 4 degradation,enhancing ferroptosis sensitivity.Additionally,inhibiting the Xc-transport system to prevent ferroptosis can increase disulfide formation and shift the NADP^(+)/NADPH ratio,transitioning ferroptosis to disulfidptosis.These insights help to uncover the potential connections among these novel regulated cell death forms and differentiate them from traditional regulated cell death mechanisms.In conclusion,identifying key targets and their crosstalk points among various regulated cell death pathways may aid in developing specific biomarkers to reverse the aging clock and treat age-related neurodegenerative conditions. 展开更多
关键词 apoptosis autophagy cuproptosis disulfidptosis ferroptosis NECROPTOSIS neurodegenerative disease neurological aging diseases PANoptosis PYROPTOSIS
下载PDF
The complex roles of m^(6)A modifications in neural stem cell proliferation, differentiation, and self-renewal and implications for memory and neurodegenerative diseases
11
作者 Yanxi Li Jing Xue +8 位作者 Yuejia Ma Ke Ye Xue Zhao Fangliang Ge Feifei Zheng Lulu Liu Xu Gao Dayong Wang Qing Xia 《Neural Regeneration Research》 SCIE CAS 2025年第6期1582-1598,共17页
N6-methyladenosine(m^(6)A), the most prevalent and conserved RNA modification in eukaryotic cells, profoundly influences virtually all aspects of mRNA metabolism. mRNA plays crucial roles in neural stem cell genesis a... N6-methyladenosine(m^(6)A), the most prevalent and conserved RNA modification in eukaryotic cells, profoundly influences virtually all aspects of mRNA metabolism. mRNA plays crucial roles in neural stem cell genesis and neural regeneration, where it is highly concentrated and actively involved in these processes. Changes in m^(6)A modification levels and the expression levels of related enzymatic proteins can lead to neurological dysfunction and contribute to the development of neurological diseases. Furthermore, the proliferation and differentiation of neural stem cells, as well as nerve regeneration, are intimately linked to memory function and neurodegenerative diseases. This paper presents a comprehensive review of the roles of m^(6)A in neural stem cell proliferation, differentiation, and self-renewal, as well as its implications in memory and neurodegenerative diseases. m^(6)A has demonstrated divergent effects on the proliferation and differentiation of neural stem cells. These observed contradictions may arise from the time-specific nature of m^(6)A and its differential impact on neural stem cells across various stages of development. Similarly, the diverse effects of m^(6)A on distinct types of memory could be attributed to the involvement of specific brain regions in memory formation and recall. Inconsistencies in m^(6)A levels across different models of neurodegenerative disease, particularly Alzheimer's disease and Parkinson's disease, suggest that these disparities are linked to variations in the affected brain regions. Notably, the opposing changes in m^(6)A levels observed in Parkinson's disease models exposed to manganese compared to normal Parkinson's disease models further underscore the complexity of m^(6)A's role in neurodegenerative processes. The roles of m^(6)A in neural stem cell proliferation, differentiation, and self-renewal, and its implications in memory and neurodegenerative diseases, appear contradictory. These inconsistencies may be attributed to the timespecific nature of m^(6)A and its varying effects on distinct brain regions and in different environments. 展开更多
关键词 Alzheimer's disease cell self-renewal central nervous system MEMORY MICROGLIA nerve regeneration neurodegenerative diseases NEUROGENESIS RNA methylation
下载PDF
Mitochondrial therapeutics and mitochondrial transfer for neurodegenerative diseases and aging
12
作者 Neville Ng Michelle Newbery +1 位作者 Nicole Miles Lezanne Ooi 《Neural Regeneration Research》 SCIE CAS 2025年第3期794-796,共3页
Mitochondrial dysfunction and neurodegeneration:Progressive neurodegenerative diseases affect a significant proportion of the population;in a single year,there are as many as 276 million disabilities and 9 million dea... Mitochondrial dysfunction and neurodegeneration:Progressive neurodegenerative diseases affect a significant proportion of the population;in a single year,there are as many as 276 million disabilities and 9 million deaths as a result of neurological diseases. 展开更多
关键词 DEGENERATIVE diseases MITOCHONDRIAL
下载PDF
Role of resident memory T cells in neuroinflammatory and neurodegenerative diseases in the central nervous system
13
作者 Kimitoshi Kimura 《Neural Regeneration Research》 SCIE CAS 2025年第11期3227-3228,共2页
The immune system has been attracting increasing attention in the field of chronic neurological disorders in the central nervous system(CNS).Autoreactive T cells targeting CNS antigens play a crucial role in the devel... The immune system has been attracting increasing attention in the field of chronic neurological disorders in the central nervous system(CNS).Autoreactive T cells targeting CNS antigens play a crucial role in the development of various autoimmune diseases,such as multiple sclerosis(MS)and neuromyelitis optica spectrum disorder(NMOSD).Moreover,T cells are now recognized as a pivotal contributor to the pathology of neurodegenerative disorders,including Alzheimer's disease(AD),Parkinson's disease(PD),and multiple system atrophy. 展开更多
关键词 diseases DEGENERATIVE PATHOLOGY
下载PDF
Netrin-1 signaling pathway mechanisms in neurodegenerative diseases
14
作者 Kedong Zhu Hualong Wang +2 位作者 Keqiang Ye Guiqin Chen Zhaohui Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第4期960-972,共13页
Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal sur... Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function.Increasing amounts of evidence highlight several key points:(1)Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer’s disease and Parkinson’s disease,and potentially,similar alterations occur in humans.(2)Genetic mutations of Netrin-1 receptors increase an individuals’susceptibility to neurodegenerative disorders.(3)Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function.(4)Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers.These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases.Through a comprehensive review of Netrin-1 signaling pathways,our objective is to uncover potential therapeutic avenues for neurodegenerative disorders. 展开更多
关键词 Alzheimer’s disease axon guidance colorectal cancer Netrin-1 receptors Netrin-1 signaling pathways NETRIN-1 neurodegenerative diseases neuron survival Parkinson’s disease UNC5C
下载PDF
Exploring the interaction between the gut microbiota and cyclic adenosine monophosphate-protein kinase A signaling pathway:a potential therapeutic approach for neurodegenerative diseases
15
作者 Fengcheng Deng Dan Yang +6 位作者 Lingxi Qing Yifei Chen Jilian Zou Meiling Jia Qian Wang Runda Jiang Lihua Huang 《Neural Regeneration Research》 SCIE CAS 2025年第11期3095-3112,共18页
The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enh... The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases. 展开更多
关键词 cyclic adenosine monophosphate emotional disorders gut microbiota neurodegenerative diseases neurological diseases protein kinase A reciprocal regulation signaling pathway STRATEGY THERAPIES
下载PDF
Exploring the role of N-acetyltransferases in diseases:a focus on N-acetyltransferase 9 in neurodegeneration
16
作者 Prajakta Deshpande Anuradha Venkatakrishnan Chimata Amit Singh 《Neural Regeneration Research》 SCIE CAS 2025年第10期2862-2871,共10页
Acetyltransferases,required to transfer an acetyl group on protein are highly conserved proteins that play a crucial role in development and disease.Protein acetylation is a common post-translational modification pivo... Acetyltransferases,required to transfer an acetyl group on protein are highly conserved proteins that play a crucial role in development and disease.Protein acetylation is a common post-translational modification pivotal to basic cellular processes.Close to 80%-90%of proteins are acetylated during translation,which is an irreversible process that affects protein structure,function,life,and localization.In this review,we have discussed the various N-acetyltransferases present in humans,their function,and how they might play a role in diseases.Furthermore,we have focused on N-acetyltransferase 9 and its role in microtubule stability.We have shed light on how N-acetyltransferase 9 and acetylation of proteins can potentially play a role in neurodegenerative diseases.We have specifically discussed the N-acetyltransferase 9-acetylation independent function and regulation of c-Jun N-terminal kinase signaling and microtubule stability during development and neurodegeneration. 展开更多
关键词 acetyl-coenzyme A Alzheimer’s disease animal models cell death DROSOPHILA eye human disease c-Jun N-terminal kinase signaling N-Acetyltransferases N-acetyltransferase 9 NEURODEGENERATION
下载PDF
The gut-eye axis:from brain neurodegenerative diseases to age-related macular degeneration
17
作者 Qianzi Jin Suyu Wang +2 位作者 Yujia Yao Qin Jiang Keran Li 《Neural Regeneration Research》 SCIE CAS 2025年第10期2741-2757,共17页
Age-related macular degeneration is a serious neurodegenerative disease of the retina that significantly impacts vision.Unfortunately,the specific pathogenesis remains unclear,and effective early treatment options are... Age-related macular degeneration is a serious neurodegenerative disease of the retina that significantly impacts vision.Unfortunately,the specific pathogenesis remains unclear,and effective early treatment options are consequently lacking.The microbiome is defined as a large ecosystem of microorganisms living within and coexisting with a host.The intestinal microbiome undergoes dynamic changes owing to age,diet,genetics,and other factors.Such dysregulation of the intestinal flora can disrupt the microecological balance,resulting in immunological and metabolic dysfunction in the host,and affecting the development of many diseases.In recent decades,significant evidence has indicated that the intestinal flora also influences systems outside of the digestive tract,including the brain.Indeed,several studies have demonstrated the critical role of the gut-brain axis in the development of brain neurodegenerative diseases,including Alzheimer’s disease and Parkinson’s disease.Similarly,the role of the“gut-eye axis”has been confirmed to play a role in the pathogenesis of many ocular disorders.Moreover,age-related macular degeneration and many brain neurodegenerative diseases have been shown to share several risk factors and to exhibit comparable etiologies.As such,the intestinal flora may play an important role in age-related macular degeneration.Given the above context,the present review aims to clarify the gut-brain and gut-eye connections,assess the effect of intestinal flora and metabolites on age-related macular degeneration,and identify potential diagnostic markers and therapeutic strategies.Currently,direct research on the role of intestinal flora in age-related macular degeneration is still relatively limited,while studies focusing solely on intestinal flora are insufficient to fully elucidate its functional role in age-related macular degeneration.Organ-on-a-chip technology has shown promise in clarifying the gut-eye interactions,while integrating analysis of the intestinal flora with research on metabolites through metabolomics and other techniques is crucial for understanding their potential mechanisms. 展开更多
关键词 age-related macular degeneration biological agents blinding eye disease dietary nutrition fecal microbial transplantation gut-eye axis intestinal flora METABOLITE MICROECOLOGY neurodegenerative disease
下载PDF
Meningeal lymphatic vessel crosstalk with central nervous system immune cells in aging and neurodegenerative diseases
18
作者 Minghuang Gao Xinyue Wang +5 位作者 Shijie Su Weicheng Feng Yaona Lai Kongli Huang Dandan Cao Qi Wang 《Neural Regeneration Research》 SCIE CAS 2025年第3期763-778,共16页
Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain met... Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity. 展开更多
关键词 central nervous system meningeal lymphatic vessels IMMUNITY myeloid cells lymphatic cells neurodegenerative disease
下载PDF
Foot reflexology in autoimmune diseases:Effectiveness and mechanisms
19
作者 Jozélio Freire de Carvalho Aaron Lerner Carina Benzvi 《World Journal of Clinical Cases》 SCIE 2025年第7期1-5,共5页
Foot reflexology(FR)is a Chinese-originated and non-invasive complementary therapy increasingly used by functional,alternative and para-medical professionals.Enhance attempts are made to study FR in non-functional org... Foot reflexology(FR)is a Chinese-originated and non-invasive complementary therapy increasingly used by functional,alternative and para-medical professionals.Enhance attempts are made to study FR in non-functional organic conditions.The present invited Editorial discusses the application of FR in autoimmune diseases(AD),highlighting a few successful studies demonstrating symptomatic relief and objective improvements.Despite promising results,the FR domain remains under-investigated and an urgent need to confirm and understand the effect of FR in chronic diseases,including AD,is highly recommended. 展开更多
关键词 REFLEXOLOGY Foot reflexology Sensorineural hearing loss Autoimmune diseases AUTOIMMUNITY
下载PDF
Prospects of elafibranor in treating alcohol-associated liver diseases
20
作者 Wei-Tong Cui Hua-Ru Xue +2 位作者 Dian-Fang Wei Xiao-Yu Feng Kai Wang 《World Journal of Gastroenterology》 SCIE CAS 2025年第2期132-137,共6页
Alcohol-related liver disease(ALD),which is induced by excessive alcohol con-sumption,is a leading cause of liver-related morbidity and mortality.ALD pa-tients exhibit a spectrum of liver injuries,including hepatic st... Alcohol-related liver disease(ALD),which is induced by excessive alcohol con-sumption,is a leading cause of liver-related morbidity and mortality.ALD pa-tients exhibit a spectrum of liver injuries,including hepatic steatosis,inflam-mation,and fibrosis,similar to symptoms of nonalcohol-associated liver diseases such as primary biliary cholangitis,metabolic dysfunction-associated steatotic liver disease,and nonalcoholic steatohepatitis.Elafibranor has been approved for the treatment of primary biliary cholangitis and has been shown to improve symptoms in both animal models and in vitro cell models of metabolic dysfunc-tion-associated steatotic liver disease and nonalcoholic steatohepatitis.However,the efficacy of elafibranor in treating ALD remains unclear.In this article,we comment on the recent publication by Koizumi et al that evaluated the effects of elafibranor on liver fibrosis and gut barrier function in an ALD mouse model.Their findings indicate the potential of elafibranor for ALD treatment,but further experimental investigations and clinical trials are warranted. 展开更多
关键词 Elafibranor Alcohol-associated liver diseases Peroxisome proliferator-activated receptor LIPID Apoptosis STEATOSIS Inflammation FIBROSIS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部