When the microscopic particles was depicted by linear Schrodinger equation, we find that the particles have only a wave feature, thus, a series of difficulties and intense disputations occur in quantum mechanics. Thes...When the microscopic particles was depicted by linear Schrodinger equation, we find that the particles have only a wave feature, thus, a series of difficulties and intense disputations occur in quantum mechanics. These problems excite us to consider the nonlinear interactions among the particles or between the particle and background field, which is completely ignored in quantum mechanics. Thus we use the nonlinear Schrodinger equation to describe the natures of microscopic particles. In this case the natures and features of microscopic particles are considerably different from those in quantum mechanics, where the microscopic particles are localized and have truly a wave-particle duality. Meanwhile, they satisfy both the classical dynamics equation and Lagrangian and Hamilton equations and obey the conservation laws of mass, energy and momentum. These natures and features are due to the nonlinear interactions, which are generated in virtue of the interaction between the moved particles and background field through the mechanisms of self-trapping, self-focus and self-condensation. Finally, we verified experimentally the localization and wave-corpuscle features of microscopic particles described by the nonlinear Schrodinger equation using the properties of water soliton and optical-soliton depicted also by the nonlinear Schrodinger equation in water and optical fiber, respectively. Therefore, the new nonlinear quantum theory established on the basis of nonlinear Schrodinger equation is correct and credible. From this investigation we can not only solve difficulties and problems disputed for about a century by plenty of scientists in quantum mechanics but also promote the development of physics and enhance the knowledge and recognition levels to the essences of microscopic matter.展开更多
We debate first the properties of quantum mechanics and its difficulties and the reasons resulting in these diffuculties and its direction of development. The fundamental principles of nonlinear quantum mechanics are ...We debate first the properties of quantum mechanics and its difficulties and the reasons resulting in these diffuculties and its direction of development. The fundamental principles of nonlinear quantum mechanics are proposed and established based on these shortcomings of quantum mechanics and real motions and interactions of microscopic particles and backgound field in physical systems. Subsequently, the motion laws and wave-corpuscle duality of microscopic particles described by nonlinear Schr?dinger equation are studied completely in detail using these elementary principles and theories. Concretely speaking, we investigate the wave-particle duality of the solution of the nonlinear Schr?dinger equation, the mechanism and rules of particle collision and the uncertainty relation of particle’s momentum and position, and so on. We obtained that the microscopic particles obey the classical rules of collision of motion and satisfy the minimum uncertainty relation of position and momentum, etc. From these studies we see clearly that the moved rules and features of microscopic particle in nonlinear quantum mechanics is different from those in linear quantum mechanics. Therefore, nolinear quantum mechanics is a necessary result of development of quantum mechanics and represents correctly the properties of microscopic particles in nonlinear systems, which can solve difficulties and problems disputed for about a century by scientists in linear quantum mechanics field.展开更多
文摘When the microscopic particles was depicted by linear Schrodinger equation, we find that the particles have only a wave feature, thus, a series of difficulties and intense disputations occur in quantum mechanics. These problems excite us to consider the nonlinear interactions among the particles or between the particle and background field, which is completely ignored in quantum mechanics. Thus we use the nonlinear Schrodinger equation to describe the natures of microscopic particles. In this case the natures and features of microscopic particles are considerably different from those in quantum mechanics, where the microscopic particles are localized and have truly a wave-particle duality. Meanwhile, they satisfy both the classical dynamics equation and Lagrangian and Hamilton equations and obey the conservation laws of mass, energy and momentum. These natures and features are due to the nonlinear interactions, which are generated in virtue of the interaction between the moved particles and background field through the mechanisms of self-trapping, self-focus and self-condensation. Finally, we verified experimentally the localization and wave-corpuscle features of microscopic particles described by the nonlinear Schrodinger equation using the properties of water soliton and optical-soliton depicted also by the nonlinear Schrodinger equation in water and optical fiber, respectively. Therefore, the new nonlinear quantum theory established on the basis of nonlinear Schrodinger equation is correct and credible. From this investigation we can not only solve difficulties and problems disputed for about a century by plenty of scientists in quantum mechanics but also promote the development of physics and enhance the knowledge and recognition levels to the essences of microscopic matter.
基金the Major State Basic Research Development Program(973 program)of China for the financial support(grate No:212011CB503 701).
文摘We debate first the properties of quantum mechanics and its difficulties and the reasons resulting in these diffuculties and its direction of development. The fundamental principles of nonlinear quantum mechanics are proposed and established based on these shortcomings of quantum mechanics and real motions and interactions of microscopic particles and backgound field in physical systems. Subsequently, the motion laws and wave-corpuscle duality of microscopic particles described by nonlinear Schr?dinger equation are studied completely in detail using these elementary principles and theories. Concretely speaking, we investigate the wave-particle duality of the solution of the nonlinear Schr?dinger equation, the mechanism and rules of particle collision and the uncertainty relation of particle’s momentum and position, and so on. We obtained that the microscopic particles obey the classical rules of collision of motion and satisfy the minimum uncertainty relation of position and momentum, etc. From these studies we see clearly that the moved rules and features of microscopic particle in nonlinear quantum mechanics is different from those in linear quantum mechanics. Therefore, nolinear quantum mechanics is a necessary result of development of quantum mechanics and represents correctly the properties of microscopic particles in nonlinear systems, which can solve difficulties and problems disputed for about a century by scientists in linear quantum mechanics field.