期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Multipoint Heave Motion Prediction Method for Ships Based on the PSO-TGCN Model
1
作者 DING Shi-feng MA Qun +2 位作者 ZHOU Li HAN Sen DONG Wen-bo 《China Ocean Engineering》 SCIE EI CSCD 2023年第6期1022-1031,共10页
During ship operations,frequent heave movements can pose significant challenges to the overall safety of the ship and completion of cargo loading.The existing heave compensation systems suffer from issues such as dead... During ship operations,frequent heave movements can pose significant challenges to the overall safety of the ship and completion of cargo loading.The existing heave compensation systems suffer from issues such as dead zones and control system time lags,which necessitate the development of reasonable prediction models for ship heave movements.In this paper,a novel model based on a time graph convolutional neural network algorithm and particle swarm optimization algorithm(PSO-TGCN)is proposed for the first time to predict the multipoint heave movements of ships under different sea conditions.To enhance the dataset's suitability for training and reduce interference,various filter algorithms are employed to optimize the dataset.The training process utilizes simulated heave data under different sea conditions and measured heave data from multiple points.The results show that the PSO-TGCN model predicts the ship swaying motion in different sea states after 2 s with 84.7%accuracy,while predicting the swaying motion in three different positions.By performing a comparative study,it was also found that the present method achieves better performance that other popular methods.This model can provide technical support for intelligent ship control,improve the control accuracy of intelligent ships,and promote the development of intelligent ships. 展开更多
关键词 ship motion prediction time delay multipoint forecast time-graph convolutional neural network particle swarm optimization
下载PDF
Polar motion prediction using the combination of SSA and ARMA
2
作者 Qiaoli Kong Jingwei Han +4 位作者 Xin Jin Changsong Li Tianfa Wang Qi Bai Yanfei Chen 《Geodesy and Geodynamics》 EI CSCD 2023年第4期368-376,共9页
High-precision polar motion(PM) prediction is of important significance in astronomy, geodesy, aviation,hydrographic mapping, interstellar navigation, and so on. SSA can effectively extract the trend and period terms ... High-precision polar motion(PM) prediction is of important significance in astronomy, geodesy, aviation,hydrographic mapping, interstellar navigation, and so on. SSA can effectively extract the trend and period terms of PM,in the process of achieving high-precision medium-and long-term polar motion prediction,it is necessary to solve the end effect problem and overfitting problem of SSA forecasting method;therefore, ARMA was applied to decreasethe end effect, and a suitable combination of reconstructed components was determined to avoid the high variance reaction of SSA overfitting. Based on the decomposition and reconstruction of the PM by SSA, the reconstructed components are determined to participate in the SSA iterative fitting model according to the variance contribution rate. The combination of the reconstructed components representing the polar motion period term and the trend term is determined according to the correlation analysis of the selected reconstructed components. After the above work, the principal component prediction sequence is obtained by fitting the period term and the trend term to convergence, respectively, and then, the SSA end effect is modified, and the residual term is predicted based on ARMA. The test results show that he prediction accuracy of SSA + ARMA at the front of the X and Y directions are improved by 96.90% and 97.53% compared with those of SSA, respectively,and the forecast accuracy of 365 days are improved by 37.93% and 19.53% in the X and Y directions compared with those of Bulletin A, respectively. 展开更多
关键词 Polar motion prediction SSA ARMA End effect
下载PDF
Vehicle Motion Prediction at Intersections Based on the Turning Intention and Prior Trajectories Model 被引量:7
3
作者 Ting Zhang Wenjie Song +2 位作者 Mengyin Fu Yi Yang Meiling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第10期1657-1666,共10页
Intersections are quite important and complex traffic scenarios,where the future motion of surrounding vehicles is an indispensable reference factor for the decision-making or path planning of autonomous vehicles.Cons... Intersections are quite important and complex traffic scenarios,where the future motion of surrounding vehicles is an indispensable reference factor for the decision-making or path planning of autonomous vehicles.Considering that the motion trajectory of a vehicle at an intersection partly obeys the statistical law of historical data once its driving intention is determined,this paper proposes a long short-term memory based(LSTM-based)framework that combines intention prediction and trajectory prediction together.First,we build an intersection prior trajectories model(IPTM)by clustering and statistically analyzing a large number of prior traffic flow trajectories.The prior trajectories model with fitted probabilistic density is used to approximate the distribution of the predicted trajectory,and also serves as a reference for credibility evaluation.Second,we conduct the intention prediction through another LSTM model and regard it as a crucial cue for a trajectory forecast at the early stage.Furthermore,the predicted intention is also a key that is associated with the prior trajectories model.The proposed framework is validated on two publically released datasets,next generation simulation(NGSIM)and INTERACTION.Compared with other prediction methods,our framework is able to sample a trajectory from the estimated distribution,with its accuracy improved by about 20%.Finally,the credibility evaluation,which is based on the prior trajectories model,makes the framework more practical in the real-world applications. 展开更多
关键词 Autonomous vehicle intersection motion prediction prior trajectories model turning intention
下载PDF
A new polar motion prediction method combined with the difference between polar motion series 被引量:2
4
作者 Leyang Wang Wei Miao Fei Wu 《Geodesy and Geodynamics》 CSCD 2022年第6期564-572,共9页
After the first Earth Orientation Parameters Prediction Comparison Campaign(1 st EOP PCC),the traditional method using least-squares extrapolation and autoregressive(LS+AR)models was considered as one of the polar mot... After the first Earth Orientation Parameters Prediction Comparison Campaign(1 st EOP PCC),the traditional method using least-squares extrapolation and autoregressive(LS+AR)models was considered as one of the polar motion prediction methods with higher accuracy.The traditional method predicts individual polar motion series separately,which has a single input data and limited improvement in prediction accuracy.To address this problem,this paper proposes a new method for predicting polar motion by combining the difference between polar motion series.The X,Y,and Y-X series were predicted separately using LS+AR models.Then,the new forecast value of X series is obtained by combining the forecast value of Y series with that of Y-X series;the new forecast value of Y series is obtained by combining the forecast value of X series with that of Y-X series.The hindcast experimental comparison results from January 1,2011 to April 4,2021 show that the new method achieves a maximum improvement of 12.95%and 14.96%over the traditional method in the X and Y directions,respectively.The new method has obvious advantages compared with the differential method.This study tests the stability and superiority of the new method and provides a new idea for the research of polar motion prediction. 展开更多
关键词 Earth rotation parameters Polar motion prediction LS+AR Differences between series Mean absolute error
下载PDF
STTG-net:a Spatio-temporal network for human motion prediction based on transformer and graph convolution network
5
作者 Lujing Chen Rui Liu +3 位作者 Xin Yang Dongsheng Zhou Qiang Zhang Xiaopeng Wei 《Visual Computing for Industry,Biomedicine,and Art》 EI 2022年第1期224-238,共15页
In recent years,human motion prediction has become an active research topic in computer vision.However,owing to the complexity and stochastic nature of human motion,it remains a challenging problem.In previous works,h... In recent years,human motion prediction has become an active research topic in computer vision.However,owing to the complexity and stochastic nature of human motion,it remains a challenging problem.In previous works,human motion prediction has always been treated as a typical inter-sequence problem,and most works have aimed to capture the temporal dependence between successive frames.However,although these approaches focused on the effects of the temporal dimension,they rarely considered the correlation between different joints in space.Thus,the spatio-temporal coupling of human joints is considered,to propose a novel spatio-temporal network based on a transformer and a gragh convolutional network(GCN)(STTG-Net).The temporal transformer is used to capture the global temporal dependencies,and the spatial GCN module is used to establish local spatial correlations between the joints for each frame.To overcome the problems of error accumulation and discontinuity in the motion prediction,a revision method based on fusion strategy is also proposed,in which the current prediction frame is fused with the previous frame.The experimental results show that the proposed prediction method has less prediction error and the prediction motion is smoother than previous prediction methods.The effectiveness of the proposed method is also demonstrated comparing it with the state-of-the-art method on the Human3.6 M dataset. 展开更多
关键词 Human motion prediction TRANSFORMER Gragh convolutional network
下载PDF
A HEVC Video Steganalysis Method Using the Optimality of Motion Vector Prediction
6
作者 Jun Li Minqing Zhang +2 位作者 Ke Niu Yingnan Zhang Xiaoyuan Yang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2085-2103,共19页
Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detectio... Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detection performance,this paper proposes a steganalysis method that can perfectly detectMV-based steganography in HEVC.Firstly,we define the local optimality of MVP(Motion Vector Prediction)based on the technology of AMVP(Advanced Motion Vector Prediction).Secondly,we analyze that in HEVC video,message embedding either usingMVP index orMVD(Motion Vector Difference)may destroy the above optimality of MVP.And then,we define the optimal rate of MVP as a steganalysis feature.Finally,we conduct steganalysis detection experiments on two general datasets for three popular steganographymethods and compare the performance with four state-ofthe-art steganalysis methods.The experimental results demonstrate the effectiveness of the proposed feature set.Furthermore,our method stands out for its practical applicability,requiring no model training and exhibiting low computational complexity,making it a viable solution for real-world scenarios. 展开更多
关键词 Video steganography video steganalysis motion vector prediction motion vector difference advanced motion vector prediction local optimality
下载PDF
Towards trustworthy multi-modal motion prediction:Holistic evaluation and interpretability of outputs
7
作者 Sandra Carrasco Limeros Sylwia Majchrowska +3 位作者 Joakim Johnander Christoffer Petersson MiguelÁngel Sotelo David Fernández Llorca 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期557-572,共16页
Predicting the motion of other road agents enables autonomous vehicles to perform safe and efficient path planning.This task is very complex,as the behaviour of road agents depends on many factors and the number of po... Predicting the motion of other road agents enables autonomous vehicles to perform safe and efficient path planning.This task is very complex,as the behaviour of road agents depends on many factors and the number of possible future trajectories can be consid-erable(multi-modal).Most prior approaches proposed to address multi-modal motion prediction are based on complex machine learning systems that have limited interpret-ability.Moreover,the metrics used in current benchmarks do not evaluate all aspects of the problem,such as the diversity and admissibility of the output.The authors aim to advance towards the design of trustworthy motion prediction systems,based on some of the re-quirements for the design of Trustworthy Artificial Intelligence.The focus is on evaluation criteria,robustness,and interpretability of outputs.First,the evaluation metrics are comprehensively analysed,the main gaps of current benchmarks are identified,and a new holistic evaluation framework is proposed.Then,a method for the assessment of spatial and temporal robustness is introduced by simulating noise in the perception system.To enhance the interpretability of the outputs and generate more balanced results in the proposed evaluation framework,an intent prediction layer that can be attached to multi-modal motion prediction models is proposed.The effectiveness of this approach is assessed through a survey that explores different elements in the visualisation of the multi-modal trajectories and intentions.The proposed approach and findings make a significant contribution to the development of trustworthy motion prediction systems for autono-mous vehicles,advancing the field towards greater safety and reliability. 展开更多
关键词 autonomous vehicles evaluation interpretability multi-modal motion prediction robustness trustworthy AI
下载PDF
A Hybrid BPNN-GARF-SVR Prediction Model Based on EEMD for Ship Motion
8
作者 Hao Han Wei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期1353-1370,共18页
Accurate prediction of shipmotion is very important for ensuringmarine safety,weapon control,and aircraft carrier landing,etc.Ship motion is a complex time-varying nonlinear process which is affected by many factors.T... Accurate prediction of shipmotion is very important for ensuringmarine safety,weapon control,and aircraft carrier landing,etc.Ship motion is a complex time-varying nonlinear process which is affected by many factors.Time series analysis method and many machine learning methods such as neural networks,support vector machines regression(SVR)have been widely used in ship motion predictions.However,these single models have certain limitations,so this paper adopts amulti-model prediction method.First,ensemble empirical mode decomposition(EEMD)is used to remove noise in ship motion data.Then the randomforest(RF)prediction model optimized by genetic algorithm(GA),back propagation neural network(BPNN)prediction model and SVR prediction model are respectively established,and the final prediction results are obtained by results of three models.And the weights coefficients are determined by the correlation coefficients,reducing the risk of prediction and improving the reliability.The experimental results show that the proposed combined model EEMD-GARF-BPNN-SVR is superior to the single predictive model and more reliable.The mean absolute percentage error(MAPE)of the proposed model is 0.84%,but the results of the single models are greater than 1%. 展开更多
关键词 Back propagation neural network ensemble empirical mode decomposition genetic algorithm random forest SVR ship motion prediction
下载PDF
Robotic Etiquette:Socially Acceptable Navigation of Service Robots with Human Motion Pattern Learning and Prediction 被引量:3
9
作者 Kun Qian,Xudong Ma,Xianzhong Dai,Fang Fang Key Lab of Measurement and Control of Complex Systems of Engineering (Ministry of Education,China), Southeast University,Nanjing 210096,P.R.China 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第2期150-160,共11页
Nonverbal and noncontact behaviors play a significant role in allowing service robots to structure their interactions withhumans.In this paper, a novel human-mimic mechanism of robot’s navigational skills was propose... Nonverbal and noncontact behaviors play a significant role in allowing service robots to structure their interactions withhumans.In this paper, a novel human-mimic mechanism of robot’s navigational skills was proposed for developing sociallyacceptable robotic etiquette.Based on the sociological and physiological concerns of interpersonal interactions in movement,several criteria in navigation were represented by constraints and incorporated into a unified probabilistic cost grid for safemotion planning and control, followed by an emphasis on the prediction of the human’s movement for adjusting the robot’spre-collision navigational strategy.The human motion prediction utilizes a clustering-based algorithm for modeling humans’indoor motion patterns as well as the combination of the long-term and short-term tendency prediction that takes into accountthe uncertainties of both velocity and heading direction.Both simulation and real-world experiments verified the effectivenessand reliability of the method to ensure human’s safety and comfort in navigation.A statistical user trials study was also given tovalidate the users’favorable views of the human-friendly navigational behavior. 展开更多
关键词 robotic etiquette NAVIGATION human motion prediction human-robot interaction service robot
下载PDF
Human motion prediction using optimized sliding window polynomial fitting and recursive least squares 被引量:2
10
作者 Li Qinghua Zhang Zhao +3 位作者 Feng Chao Mu Yaqi You Yue Li Yanqiang 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2021年第3期76-85,110,共11页
Human motion prediction is a critical issue in human-robot collaboration(HRC)tasks.In order to reduce the local error caused by the limitation of the capture range and sampling frequency of the depth sensor,a hybrid h... Human motion prediction is a critical issue in human-robot collaboration(HRC)tasks.In order to reduce the local error caused by the limitation of the capture range and sampling frequency of the depth sensor,a hybrid human motion prediction algorithm,optimized sliding window polynomial fitting and recursive least squares(OSWPF-RLS)was proposed.The OSWPF-RLS algorithm uses the human body joint data obtained under the HRC task as input,and uses recursive least squares(RLS)to predict the human movement trajectories within the time window.Then,the optimized sliding window polynomial fitting(OSWPF)is used to calculate the multi-step prediction value,and the increment of multi-step prediction value was appropriately constrained.Experimental results show that compared with the existing benchmark algorithms,the OSWPF-RLS algorithm improved the multi-step prediction accuracy of human motion and enhanced the ability to respond to different human movements. 展开更多
关键词 human-robot collaboration(HRC) human motion prediction sliding window polynomial fitting(SWPF)algorithm recursive least squares(RLS) optimized sliding window polynomial fitting and recursive least squares(OSWPF-RLS)
原文传递
Improvement of the prediction accuracy of polar motion using empirical mode decomposition 被引量:1
11
作者 Yu Lei Hongbing Cai Danning Zhao 《Geodesy and Geodynamics》 2017年第2期141-146,共6页
Previous studies revealed that the error of pole coordinate prediction will significantly increase for a prediction period longer than 100 days, and this is mainly caused by short period oscillations. Empirical mode d... Previous studies revealed that the error of pole coordinate prediction will significantly increase for a prediction period longer than 100 days, and this is mainly caused by short period oscillations. Empirical mode decomposition (EMD), which is increasingly popular and has advantages over classical wavelet decomposition, can be used to remove short period variations from observed time series of pole co- ordinates. A hybrid model combing EMD and extreme learning machine (ELM), where high frequency signals are removed and processed time series is then modeled and predicted, is summarized in this paper. The prediction performance of the hybrid model is compared with that of the ELM-only method created from original time series. The results show that the proposed hybrid model outperforms the pure ELM method for both short-term and long-term prediction of pole coordinates. The improvement of prediction accuracy up to 360 days in the future is found to be 24.91% and 26.79% on average in terms of mean absolute error (MAE) for the xp and yp components of pole coordinates, respectively. 展开更多
关键词 Polar motion prediction model Empirical mode decomposition (EMD)Neural networks (NN)Extreme learning machine (ELM)
下载PDF
Design of Human Adaptive Mechatronics Controller for Upper Limb Motion Intention Prediction
12
作者 R.Joshua Samuel Raj J.Prince Antony Joel +2 位作者 Salem Alelyani Mohammed Saleh Alsaqer C.Anand Deva Durai 《Computers, Materials & Continua》 SCIE EI 2022年第4期1171-1188,共18页
Human Adaptive Mechatronics(HAM)includes human and computer system in a closed loop.Elderly person with disabilities,normally carry out their daily routines with some assistance to move their limbs.With the short fall... Human Adaptive Mechatronics(HAM)includes human and computer system in a closed loop.Elderly person with disabilities,normally carry out their daily routines with some assistance to move their limbs.With the short fall of human care takers,mechatronics devices are used with the likes of exoskeleton and exosuits to assist them.The rehabilitation and occupational therapy equipments utilize the electromyography(EMG)signals to measure the muscle activity potential.This paper focuses on optimizing the HAM model in prediction of intended motion of upper limb with high accuracy and to increase the response time of the system.Limb characteristics extraction from EMG signal and prediction of optimal controller parameters are modeled.Time and frequency based approach of EMG signal are considered for feature extraction.The models used for estimating motion and muscle parameters from EMG signal for carrying out limb movement predictions are validated.Based on the extracted features,optimal parameters are selected by Modified Lion Optimization(MLO)for controlling the HAM system.Finally,supervised machine learning makes predictions at different points in time for individual sensing using Support Vector Neural Network(SVNN).This model is also evaluated based on optimal parameters of motion estimation and the accuracy level along with different optimization models for various upper limb movements.The proposed model of human adaptive controller predicts the limb movement by 96%accuracy. 展开更多
关键词 EXOSKELETON electromyography(emg) human adaptive mechatronics occupational therapy motion prediction machine learning
下载PDF
Characteristics of horizontal ground motion measures along principal directions 被引量:1
13
作者 K.Goda 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第1期9-22,共14页
Ground motion records are often used to develop ground motion prediction equations (GMPEs) for a randomly oriented horizontal component, and to assess the principal directions of ground motions based on the Arias in... Ground motion records are often used to develop ground motion prediction equations (GMPEs) for a randomly oriented horizontal component, and to assess the principal directions of ground motions based on the Arias intensity tensor or the orientation of the major response axis. The former is needed for seismic hazard assessment, whereas the latter can be important for assessing structural responses under multi-directional excitations. However, a comprehensive investigation of the pseudo-spectral acceleration (PSA) and of GMPEs conditioned on different axes is currently lacking. This study investigates the principal directions of strong ground motions and their relation to the orientation of the major response axis, statistics of the PSA along the principal directions on the horizontal plane, and correlation of the PSA along the principal directions on the horizontal plane. For these, three sets of strong ground motion records, including intraplate California earthquakes, inslab Mexican earthquakes, and interface Mexican earthquakes, are used. The results indicate that one of the principal directions could be considered as quasi-vertical. By focusing on seismic excitations on the horizontal plane, the statistics of the angles between the major response axis and the major principal axis are obtained; GMPEs along the principal axes are provided and compared with those obtained for a randomly oriented horizontal component; and statistical analysis of residuals associated with GMPEs along the principal directions is carried out. 展开更多
关键词 Arias intensity attenuation relation bi-directional seismic excitation ground motion prediction equation principal direction pseudo-spectral acceleration response axis
下载PDF
Comparison of strong-motion records and damage implications between the 2014 Yunnan M_S6.5 Ludian earthquake and M_S6.6 Jinggu earthquake 被引量:1
14
作者 Peibin Xu Ruizhi Wen Yefei Ren 《Earthquake Science》 CSCD 2018年第1期12-18,共7页
Serial destructive earthquakes have caused heavy casualties and economic losses to the city in southwestern of China. The Ludian Ms 6.5 earthquake and the Jinggu Ms 6.6 earthquake occurred in Yunnan province in 2014. ... Serial destructive earthquakes have caused heavy casualties and economic losses to the city in southwestern of China. The Ludian Ms 6.5 earthquake and the Jinggu Ms 6.6 earthquake occurred in Yunnan province in 2014. There is a question of why the two events with almost the same level of magnitude caused differences in earthquake damage. To understand the uniqueness of the phenomenon, this paper focuses on the characteristics of the ground motions and post-earthquake field investigation for the two events. Firstly, we present an overview of the residuals between the Ludian earthquake and the Jinggu earthquake based on the YW06 Ground Motion Prediction Equation (GMPE), and explain the unusual destructiveness of the strong ground motion. Then we analyze the ground motion recordings at selected typical station, based on the strong motion parameters: equivalent predominant frequency and Arias intensity. The result exhibits a good agreement with the Chinese seismic intensity scale. This study would be helpful to gain a better knowledge of the characteristics and variability of ground motions for Ms6 class earthquakes in China and to understand the implications to future earthquakes with similar focal mechanism and local condition. 展开更多
关键词 Ludian earthquake Jinggu earthquake ground motion prediction equation earthquake damage
下载PDF
Engineering Analysis of Strong Motion Data from Recent Earthquakes in Sichuan, China
15
作者 HUANG Chen GALASSO Carmine 《工程科学与技术》 EI CAS CSCD 北大核心 2018年第3期112-124,共13页
Recent earthquakes in the Sichuan Province have contributed to significantly expand the existing ground-motion database for China with new,high-quality ground-motion records.This study investigated the compatibility o... Recent earthquakes in the Sichuan Province have contributed to significantly expand the existing ground-motion database for China with new,high-quality ground-motion records.This study investigated the compatibility of ground-motion prediction equations(GMPEs)established by the NGA-West2 project in the US and local GMPEs for China,with respect to magnitude scaling,distance scaling,and site scaling implied by recent Chinese strong-motion data.The NGA-West2 GMPEs for shallow crustal earthquakes in tectonically active regions are considerably more sophisticated than widely used previous models,particularly in China.Using a mixed-effects procedure,the study evaluated event terms(inter-event residuals)and intra-event residuals of Chinese data relative to the NGA-West2 GMPEs.Distance scaling was investigated by examining trends of intra-event residuals with source-to-site distance.Scaling with respect to site conditions was investigated by examining trends of intra-event residuals with soil type.The study also investigated other engineering characteristics of Chinese strong ground motions.In particular,the records were analyzed for evidence of pulse-like forward-directivity effects.The elastic median response spectra of the selected stations were compared to code-mandated design spectra for various mean return periods.Results showed that international and local GMPEs can be applied for seismic hazard analysis in Sichuan with minor modification of the regression coefficients related to the source-to-site distance and soil scaling.Specifically,the Chinese data attenuated faster than implied by the considered GMPEs and the differences were statistically significant in some cases.Near-source,pulse-like ground motions were identified at two recording stations for the 2008 Wenchuan earthquake,possibly implying rupture directivity.The median recorded spectra were consistent with the code-based spectra in terms of amplitude and shape.The new ground-motion data can be used to develop advanced ground-motion models for China and worldwide and,ultimately,for advancing probabilistic seismic hazard assessment(PSHA). 展开更多
关键词 ground motion prediction equations NGA-West2 project code-based spectrum pulse-like ground motions
下载PDF
Online Observability-Constrained Motion Suggestion via Efficient Motion Primitive-Based Observability Analysis
16
作者 Zheng Rong Shun'an Zhong Nathan Michael 《Journal of Beijing Institute of Technology》 EI CAS 2018年第1期92-102,共11页
An active perception methodology is proposed to locally predict the observability condition in a reasonable horizon and suggest an observability-constrained motion direction for the next step to ensure an accurate and... An active perception methodology is proposed to locally predict the observability condition in a reasonable horizon and suggest an observability-constrained motion direction for the next step to ensure an accurate and consistent state estimation performance of vision-based navigation systems. The methodology leverages an efficient EOG-based observability analysis and a motion primitive-based path sampling technique to realize the local observability prediction with a real-time performance. The observability conditions of potential motion trajectories are evaluated,and an informed motion direction is selected to ensure the observability efficiency for the state estimation system. The proposed approach is specialized to a representative optimizationbased monocular vision-based state estimation formulation and demonstrated through simulation and experiments to evaluate the ability of estimation degradation prediction and efficacy of motion direction suggestion. 展开更多
关键词 observability analysis observability prediction motion primitive motion suggestion monocular visual-inertial state estimation active perception
下载PDF
Probabilistic seismic hazard assessment of Kazakhstan and Almaty city in peak ground accelerations 被引量:3
17
作者 N.V.Silacheva U.K.Kulbayeva N.A.Kravchenko 《Geodesy and Geodynamics》 2018年第2期131-141,共11页
As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment... As for many post-soviet countries, Kazakhstan’s building code for seismic design was based on a deterministic approach. Recently, Kazakhstan seismologists are engaged to adapt the PSHA(probabilistic hazard assessment) procedure to the large amount of available geological, geophysical and tectonic Kazakh data and to meet standard requirements for the Eurocode 8. The new procedure has been used within National projects to develop the Probabilistic GSZ(General Seismic Zoning) maps of the Kazakhstan territory and the SMZ(Probabilistic Seismic Microzoning) maps of Almaty city. They agree with the seismic design principles of Eurocode 8 and are expressed in terms of not only seismic intensity,but also engineering parameters(peak ground acceleration PGA). The whole packet of maps has been developed by the Institute of Seismology, together with other Kazakhstan Institutions. Our group was responsible for making analysis in PGA. The GSZ maps and hazard assessment maps for SMZ in terms of PGA for return periods 475 and 2475 years are considered in the article. 展开更多
关键词 Probabilistic seismic hazard assessment Seismic zoning map Peak ground acceleration Seismic sources Seismotectonic setting Seismic regime Ground motion prediction equations
下载PDF
Predicting 3-DoF motions of a moored barge by machine learning
18
作者 Yu Yang Tao Peng Shijun Liao 《Journal of Ocean Engineering and Science》 SCIE 2023年第4期336-343,共8页
The real-time prediction of a floating platform or a vessel is essential for motion-sensitive maritime activ-ities.It can enhance the performance of motion compensation system and provide useful early-warning informat... The real-time prediction of a floating platform or a vessel is essential for motion-sensitive maritime activ-ities.It can enhance the performance of motion compensation system and provide useful early-warning information.In this paper,we apply a machine learning technique to predict the surge,heave,and pitch motions of a moored rectangular barge excited by an irregular wave,which is purely based on the mo-tion data.The dataset came from a model test performed in the deep-water ocean basin,at Shanghai Jiao Tong University,China.Using the trained machine learning model,the predictions of 3-DoF(degrees of freedom)motions can extend two to four wave cycles into the future with good accuracy.It shows great potential for applying the machine learning technique to forecast the motions of offshore platforms or vessels. 展开更多
关键词 BARGE Wave-excited motion Machine learning motion prediction
原文传递
Motion direction prediction through spike timing based on micro Capsnet networks 被引量:1
19
作者 ZHANG HuaLiang LIU Ji +6 位作者 WANG BaoZeng DAI Jun LIAN JinLing KE Ang ZHAO YuWei ZHOU Jin WANG ChangYong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第11期2763-2775,共13页
Neural activity extraction and neural decoding from neural signals are an important part of critical components of brain-computer interface systems.With the development of brain-computer interface technology,the deman... Neural activity extraction and neural decoding from neural signals are an important part of critical components of brain-computer interface systems.With the development of brain-computer interface technology,the demand for precise external control and nervous activities in macaque monkey during unilateral hand grasp has increased the complexity of control and neural decoding,which puts forward higher requirements for the accuracy and stability of feature extraction and neural decoding.In this study,a micro Capsnet network architecture that consists of a few network layers,a vector feature structure,and optimization network parameters,is proposed to decrease the computing time and complexity,decrease artificial debugging,and improve the decoding accuracy.Compared with KNN,SVM,XGBOOST,CNN,Simple RNN,and LSTM,the algorithm in this study improves the decoding accuracy by 98.03%,and achieves state-of-the-art accuracy and stronger robustness.Furthermore,the proposed algorithm can further enhance the control accuracy in the brain-computer interface. 展开更多
关键词 spike timing micro Capsnet network brain-computer interface motion direction prediction optimized network parameter
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部