The current research of electro-hydraulic servo valves mainly focuses on the vibration, pressure oscillating and source of noise. Unfortunately, literatures relating to the study of the influence of the magnetic reluc...The current research of electro-hydraulic servo valves mainly focuses on the vibration, pressure oscillating and source of noise. Unfortunately, literatures relating to the study of the influence of the magnetic reluctances of the magnetic elements are rarely available. This paper aims to analyze the influence of the magnetic reluctances of the magnetic elements on torque motor. Considering these magnetic reluctances ignored in previous literatures, a new mathematical model of servo valve torque motor is developed and proposed based on the fundamental laws of electromagnetism. By using this new mathematical model and the previous models, electromagnetic torque constant and magnetic spring stiffness are evaluated for a given set of torque motor parameters. A computer simulation by using AMESim software is also performed for the same set of torque motor parameters to verify the proposed model. The theoretical results of electromagnetic torque constant and magnetic spring stiffness evaluated by the proposed model render closer agreement with the simulation results than those evaluated by the previous models. In addition, an experimental measurement of the magnetic flux densities in the air-gaps is carried out by using SFL218 servo valve torque motor. Compared with the theoretical results of the magnetic flux densities in the air-gaps evaluated by the previous models, the theoretical results evaluated by the proposed model also show better agreement with the experimental data. The proposed model shows the influence of the magnetic reluctances of the magnetic elements on the servo valve torque motor, and offers modified and analytical expressions to electromagnetic torque constant and magnetic spring stiffness. These modified and analytical expressions could provide guidance more accurately for a linear control design approach and sensitivity analysis on electro-hydraulic servo valves than the previous expressions.展开更多
This paper presents an observer-based nonlinear control method that was developed and implemented to provide accurate tracking control of a limited angle torque motor following a 50Hz reference waveform. The method is...This paper presents an observer-based nonlinear control method that was developed and implemented to provide accurate tracking control of a limited angle torque motor following a 50Hz reference waveform. The method is based on a robust nonlinear observer, which is used to estimate system states and perturbations and then employ input-output feedbazk linearization to compensate for the system nonlinearities and uncertainties. The estimation of system states and perturbations allows input-output linearization of the nonlinear system without an accurate mathematical model of nominal plant. The simulation results show that the observer-based nonlinear control method is superior in comparison with the conventional model-based state feedback linearizing controller.展开更多
Pressure-flow analytical formulas of lubrication film of slipper pairs on camshaft connecting rod type low speed high torque (LSHT) hydraulic motors are put forward. The bottom surface of slipper pairs is rectangle,...Pressure-flow analytical formulas of lubrication film of slipper pairs on camshaft connecting rod type low speed high torque (LSHT) hydraulic motors are put forward. The bottom surface of slipper pairs is rectangle, and the effect of squeeze flow and pressure differential flow is considered. The dynamic process of lubrication film formation through squeezing is numerically studied by computer simulation. Effects of supply pressure, initial lubrication film thickness, velocity damping coefficient, loading impact and gravity, etc are studied. Advantages of novel slipper pairs with large oil cavity area are pointed out.展开更多
Better torque performance and higher reliability have long been the focus of research for slotted limited-angle torque motors(LATMs),which are primarily used to position first-stage valves in electrohydraulic servosys...Better torque performance and higher reliability have long been the focus of research for slotted limited-angle torque motors(LATMs),which are primarily used to position first-stage valves in electrohydraulic servosystems.This paper presents a high reliability axial-flux slotted LATM with quasi-Halbach array for torque performance improvement including constant torque range(CTR)and output torque.Firstly,the structure with two sets of windings and the operation principle of the proposed slotted LATM is analyzed.Secondly,a brief design procedure is presented,the structure selections of open slot and double-stator single-rotor(DSSR)interior rotor with surface mounted quasi-Halbach permanent magnet(PM)array are illustrated,and the geometric parameters are optimized to obtain the optimal design of the proposed slotted LATM.Then,3-D finite-element method(FEM)is employed to compare the proposed slotted LATM with the conventional surface mounted PM slotted LATM in terms of cogging torque,no-load back EMF,and output torque,and the results show that the proposed LATM with quasi-Halbach array has a 10%improvement in output torque and a 25%improvement in CTR.Meanwhile,the flux linkages and torque performance of the two sets of windings under various conditions verify good magnetic isolation.Finally,prototypes of two different rotor types are manufactured and a series of experiments are performed to validate the analysis.展开更多
The bacterial flagellar motor is a nanometer-sized rotary motor that generates the torque to drive the rotation of the flagellar filament.The output torque is an important property of the motor.The motor rotation was ...The bacterial flagellar motor is a nanometer-sized rotary motor that generates the torque to drive the rotation of the flagellar filament.The output torque is an important property of the motor.The motor rotation was usually monitored by attaching aμm-sized bead to a shortened flagellar filament,and the torque was extracted by calculating the torque due to the viscous drag of the medium on the bead rotation.We sought for an independent extraction of the torque from thermal fluctuation in the motor rotation using the fluctuation theorem(FT).However,we identified an overwhelming fluctuation beyond the thermal noise that precluded the use of FT.We further characterized the timescale and the amplitude of this fluctuation,finding that it was probably due to the stepping of the motor.The amplitude of torque fluctuation we characterized here provided new information on the torque-generating interaction potential curve.展开更多
The application of new soft magnetic materials in permanent magnet motor can effectively reduce the loss of motor and improve the efficiency of motor. Taguchi method is a local multivariable and multi-objective optimi...The application of new soft magnetic materials in permanent magnet motor can effectively reduce the loss of motor and improve the efficiency of motor. Taguchi method is a local multivariable and multi-objective optimization method widely used in various engineering problems, which can effectively improve the efficiency of engineering optimization. In this paper, based on a 25 kW, 1700 r/min three-phase permanent magnet motor, the relevant motor model is established in the finite element simulation software, and the relevant simulation analysis is carried out. Combined with Taguchi method optimization, the local optimal structure scheme is obtained. Through optimization, the motor can maintain high efficiency, reduce the cogging torque of the motor by 53.45%, reduce the torque ripple by 36.79%, and increase the torque generated by the permanent magnet per unit mass by 21.42%. Through this optimization, the overall performance of the motor has been significantly improved. The research content of this paper verifies the feasibility of the application of Taguchi method in the optimization of new soft magnetic material motor, provides a new idea for the optimization design of new soft magnetic material motor, and also provides a certain reference for the local multi-objective optimization of the electromagnetic structure of other similar motors.展开更多
Due to quick response and large quantity of electric motor torque,the traction wheels of battery electric vehicle are easy to slip during the initial phase of starting.In this paper,a sliding mode control approach of ...Due to quick response and large quantity of electric motor torque,the traction wheels of battery electric vehicle are easy to slip during the initial phase of starting.In this paper,a sliding mode control approach of acceleration slip regulation is designed to prevent the slip of the traction wheels.The wheel slip ratio is used as the state variable for the formulation of system dynamics model.The fuzzy algorithm is utilized to adjust the switch function of sliding mode controller.After stability and robustness analysis,the sliding mode control law is transferred into C code and downloaded into vehicle control unit,which is validated under wet and dry road conditions.The experimental results with a small overshoot and a quick response during starting indicate that the sliding mode controller has good control efect on the slip ratio regulation.This article proposes an acceleration slip regulation method that improves the safety during acceleration for battery electric vehicle.展开更多
The Permanent Magnet Torque Motor(PMTM)is the key electro-mechanical conversion device in an Electro-Hydraulic Servo Valve(EHSV).In this work,a refined model of a PMTM is developed,considering the non-working air-gaps...The Permanent Magnet Torque Motor(PMTM)is the key electro-mechanical conversion device in an Electro-Hydraulic Servo Valve(EHSV).In this work,a refined model of a PMTM is developed,considering the non-working air-gaps between the upper or lower yoke and the armature,the fringing effect at the limiting holes,and the nonlinear permeability of soft magnetic material.Based on the refined model,the influences of various factors on the calculation accuracy of the magnetic flux at the pole surfaces of the armature and the output torque are investigated.For verifying the validity of the refined model,a Finite Element Analysis(FEA)of the PMTM is conducted,and a test platform is constructed.Compared with existing models,the refined model can better reveal the intrinsic mechanism of the PMTM,and its calculations are more consistent with the FEA results.The experimental results of the armature deflection displacement show that the refined model can accurately describe the output characteristics of the PMTM.展开更多
To address the problems of torque limit and controller saturation in the control of robot arm joint,an anti-windup control strategy is proposed for a humanoid robot arm,which is based on the integral state prediction ...To address the problems of torque limit and controller saturation in the control of robot arm joint,an anti-windup control strategy is proposed for a humanoid robot arm,which is based on the integral state prediction under the direct torque control system of brushless DC motor. First,the arm joint of the humanoid robot is modelled. Then the speed controller model and the influence of the initial value of the integral element on the system are analyzed. On the basis of the traditional antiwindup controller,an integral state estimator is set up. Under the condition of different load torques and the given speed,the integral steady-state value is estimated. Therefore the accumulation of the speed error terminates when the integrator reaches saturation. Then the predicted integral steady-state value is used as the initial value of the regulator to enter the linear region to make the system achieve the purpose of anti-windup. The simulation results demonstrate that the control strategy for the humanoid robot arm joint based on integral state prediction can play the role of anti-windup and suppress the overshoot of the system effectively. The system has a good dynamic performance.展开更多
The disturbance torque generated via solar array drive assembly(SADA) can significantly degrade the key performance of satellite.The discussed SADA is composed of a two-phase hybrid stepping motor and a set of two-sta...The disturbance torque generated via solar array drive assembly(SADA) can significantly degrade the key performance of satellite.The discussed SADA is composed of a two-phase hybrid stepping motor and a set of two-stage straight gear reducer. Firstly, the vibration equation of the two-phase hybrid stepping motor is established via simplifying and linearizing the electromagnetic torque.Secondly, based on the vibration equation established, the disturbance torque model of SADA is created via force analysis and force system simplification. Thirdly, for precisely ground measuring the disturbance torque aroused by SADA, a measurement system,including a strain micro-vibrations measurement platform(SMMP) and a set of gravity unloading device(GUD), is designed.Fourthly, the proposed disturbance torque model is validated by measuring and simulating the disturbance torque produced via SADA driving rigid load through GUD. The results indicate that, the proposed disturbance torque model holds the ability to describe the disturbance torque caused by SADA with high precision. Finally, the disturbance torque emitted by SADA driving a flexible load, designed to simulate solar array, is modeled and simulated via using fixed-interface mode synthesis method(FIMSM). All the conclusions drawn from this article do have a meaningful help for studying the disturbance torque produced by SADA driving solar array on orbit.展开更多
In this paper, taking two degrees of freedom on the armature–flapper assembly into account, a seventh-order model is deduced and proposed for the dynamic response of a two-stage electro-hydraulic servo valve from non...In this paper, taking two degrees of freedom on the armature–flapper assembly into account, a seventh-order model is deduced and proposed for the dynamic response of a two-stage electro-hydraulic servo valve from nonlinear equations. These deductions are based on fundamental laws of electromagnetism, fluid, and general mechanics. The coefficients of the proposed seventhorder model are derived in terms of servo valve physical parameters and fluid properties explicitly.For validating the results of the proposed model, an AMESim simulation model based on physical laws and the existing low-order models validated by other researchers through experiments are used to compare with the seventh-order model. The results show that the seventh-order model can reflect the physical behavior of the servo valve more explicitly than the existing low-order models and it could provide guidance more easily for a linear control design approach and sensitivity analysis than the AMESim simulation model.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.50975055)
文摘The current research of electro-hydraulic servo valves mainly focuses on the vibration, pressure oscillating and source of noise. Unfortunately, literatures relating to the study of the influence of the magnetic reluctances of the magnetic elements are rarely available. This paper aims to analyze the influence of the magnetic reluctances of the magnetic elements on torque motor. Considering these magnetic reluctances ignored in previous literatures, a new mathematical model of servo valve torque motor is developed and proposed based on the fundamental laws of electromagnetism. By using this new mathematical model and the previous models, electromagnetic torque constant and magnetic spring stiffness are evaluated for a given set of torque motor parameters. A computer simulation by using AMESim software is also performed for the same set of torque motor parameters to verify the proposed model. The theoretical results of electromagnetic torque constant and magnetic spring stiffness evaluated by the proposed model render closer agreement with the simulation results than those evaluated by the previous models. In addition, an experimental measurement of the magnetic flux densities in the air-gaps is carried out by using SFL218 servo valve torque motor. Compared with the theoretical results of the magnetic flux densities in the air-gaps evaluated by the previous models, the theoretical results evaluated by the proposed model also show better agreement with the experimental data. The proposed model shows the influence of the magnetic reluctances of the magnetic elements on the servo valve torque motor, and offers modified and analytical expressions to electromagnetic torque constant and magnetic spring stiffness. These modified and analytical expressions could provide guidance more accurately for a linear control design approach and sensitivity analysis on electro-hydraulic servo valves than the previous expressions.
文摘This paper presents an observer-based nonlinear control method that was developed and implemented to provide accurate tracking control of a limited angle torque motor following a 50Hz reference waveform. The method is based on a robust nonlinear observer, which is used to estimate system states and perturbations and then employ input-output feedbazk linearization to compensate for the system nonlinearities and uncertainties. The estimation of system states and perturbations allows input-output linearization of the nonlinear system without an accurate mathematical model of nominal plant. The simulation results show that the observer-based nonlinear control method is superior in comparison with the conventional model-based state feedback linearizing controller.
文摘Pressure-flow analytical formulas of lubrication film of slipper pairs on camshaft connecting rod type low speed high torque (LSHT) hydraulic motors are put forward. The bottom surface of slipper pairs is rectangle, and the effect of squeeze flow and pressure differential flow is considered. The dynamic process of lubrication film formation through squeezing is numerically studied by computer simulation. Effects of supply pressure, initial lubrication film thickness, velocity damping coefficient, loading impact and gravity, etc are studied. Advantages of novel slipper pairs with large oil cavity area are pointed out.
基金supported in part by the National Nature Science Foundation of China(NSFC)under Project 52122705。
文摘Better torque performance and higher reliability have long been the focus of research for slotted limited-angle torque motors(LATMs),which are primarily used to position first-stage valves in electrohydraulic servosystems.This paper presents a high reliability axial-flux slotted LATM with quasi-Halbach array for torque performance improvement including constant torque range(CTR)and output torque.Firstly,the structure with two sets of windings and the operation principle of the proposed slotted LATM is analyzed.Secondly,a brief design procedure is presented,the structure selections of open slot and double-stator single-rotor(DSSR)interior rotor with surface mounted quasi-Halbach permanent magnet(PM)array are illustrated,and the geometric parameters are optimized to obtain the optimal design of the proposed slotted LATM.Then,3-D finite-element method(FEM)is employed to compare the proposed slotted LATM with the conventional surface mounted PM slotted LATM in terms of cogging torque,no-load back EMF,and output torque,and the results show that the proposed LATM with quasi-Halbach array has a 10%improvement in output torque and a 25%improvement in CTR.Meanwhile,the flux linkages and torque performance of the two sets of windings under various conditions verify good magnetic isolation.Finally,prototypes of two different rotor types are manufactured and a series of experiments are performed to validate the analysis.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11925406 and 12090053)the National Key R&D Program of China(Grant No.2019YFA0709303)。
文摘The bacterial flagellar motor is a nanometer-sized rotary motor that generates the torque to drive the rotation of the flagellar filament.The output torque is an important property of the motor.The motor rotation was usually monitored by attaching aμm-sized bead to a shortened flagellar filament,and the torque was extracted by calculating the torque due to the viscous drag of the medium on the bead rotation.We sought for an independent extraction of the torque from thermal fluctuation in the motor rotation using the fluctuation theorem(FT).However,we identified an overwhelming fluctuation beyond the thermal noise that precluded the use of FT.We further characterized the timescale and the amplitude of this fluctuation,finding that it was probably due to the stepping of the motor.The amplitude of torque fluctuation we characterized here provided new information on the torque-generating interaction potential curve.
文摘The application of new soft magnetic materials in permanent magnet motor can effectively reduce the loss of motor and improve the efficiency of motor. Taguchi method is a local multivariable and multi-objective optimization method widely used in various engineering problems, which can effectively improve the efficiency of engineering optimization. In this paper, based on a 25 kW, 1700 r/min three-phase permanent magnet motor, the relevant motor model is established in the finite element simulation software, and the relevant simulation analysis is carried out. Combined with Taguchi method optimization, the local optimal structure scheme is obtained. Through optimization, the motor can maintain high efficiency, reduce the cogging torque of the motor by 53.45%, reduce the torque ripple by 36.79%, and increase the torque generated by the permanent magnet per unit mass by 21.42%. Through this optimization, the overall performance of the motor has been significantly improved. The research content of this paper verifies the feasibility of the application of Taguchi method in the optimization of new soft magnetic material motor, provides a new idea for the optimization design of new soft magnetic material motor, and also provides a certain reference for the local multi-objective optimization of the electromagnetic structure of other similar motors.
基金Supported by Key Research and Development Program of Jiangsu Province of China(Grant No.BE2021006-2)University Synergy Innovation Program of Anhui Province of China(Grant No.GXXT-2020-076)Innovation Project of New Energy Vehicle and Intelligent Connected Vehicle of Anhui Province of China,and Foundation of State Key Laboratory of Automotive Simulation and Control of China(Grant No.20201107).
文摘Due to quick response and large quantity of electric motor torque,the traction wheels of battery electric vehicle are easy to slip during the initial phase of starting.In this paper,a sliding mode control approach of acceleration slip regulation is designed to prevent the slip of the traction wheels.The wheel slip ratio is used as the state variable for the formulation of system dynamics model.The fuzzy algorithm is utilized to adjust the switch function of sliding mode controller.After stability and robustness analysis,the sliding mode control law is transferred into C code and downloaded into vehicle control unit,which is validated under wet and dry road conditions.The experimental results with a small overshoot and a quick response during starting indicate that the sliding mode controller has good control efect on the slip ratio regulation.This article proposes an acceleration slip regulation method that improves the safety during acceleration for battery electric vehicle.
基金co-supported by the National Natural Science Foundation of China(No.51975275)Primary Research&Development Plan of Jiangsu Province,China(No.BE2021034)Postgraduate Research&Practice Innovation Program of NUAA,China(No.xcxjh20210502).
文摘The Permanent Magnet Torque Motor(PMTM)is the key electro-mechanical conversion device in an Electro-Hydraulic Servo Valve(EHSV).In this work,a refined model of a PMTM is developed,considering the non-working air-gaps between the upper or lower yoke and the armature,the fringing effect at the limiting holes,and the nonlinear permeability of soft magnetic material.Based on the refined model,the influences of various factors on the calculation accuracy of the magnetic flux at the pole surfaces of the armature and the output torque are investigated.For verifying the validity of the refined model,a Finite Element Analysis(FEA)of the PMTM is conducted,and a test platform is constructed.Compared with existing models,the refined model can better reveal the intrinsic mechanism of the PMTM,and its calculations are more consistent with the FEA results.The experimental results of the armature deflection displacement show that the refined model can accurately describe the output characteristics of the PMTM.
基金Supported by the National Natural Science Foundation of China(61175090,61703249)Shandong Provincial Natural Science Foundation,China(ZR2017MF045)
文摘To address the problems of torque limit and controller saturation in the control of robot arm joint,an anti-windup control strategy is proposed for a humanoid robot arm,which is based on the integral state prediction under the direct torque control system of brushless DC motor. First,the arm joint of the humanoid robot is modelled. Then the speed controller model and the influence of the initial value of the integral element on the system are analyzed. On the basis of the traditional antiwindup controller,an integral state estimator is set up. Under the condition of different load torques and the given speed,the integral steady-state value is estimated. Therefore the accumulation of the speed error terminates when the integrator reaches saturation. Then the predicted integral steady-state value is used as the initial value of the regulator to enter the linear region to make the system achieve the purpose of anti-windup. The simulation results demonstrate that the control strategy for the humanoid robot arm joint based on integral state prediction can play the role of anti-windup and suppress the overshoot of the system effectively. The system has a good dynamic performance.
文摘The disturbance torque generated via solar array drive assembly(SADA) can significantly degrade the key performance of satellite.The discussed SADA is composed of a two-phase hybrid stepping motor and a set of two-stage straight gear reducer. Firstly, the vibration equation of the two-phase hybrid stepping motor is established via simplifying and linearizing the electromagnetic torque.Secondly, based on the vibration equation established, the disturbance torque model of SADA is created via force analysis and force system simplification. Thirdly, for precisely ground measuring the disturbance torque aroused by SADA, a measurement system,including a strain micro-vibrations measurement platform(SMMP) and a set of gravity unloading device(GUD), is designed.Fourthly, the proposed disturbance torque model is validated by measuring and simulating the disturbance torque produced via SADA driving rigid load through GUD. The results indicate that, the proposed disturbance torque model holds the ability to describe the disturbance torque caused by SADA with high precision. Finally, the disturbance torque emitted by SADA driving a flexible load, designed to simulate solar array, is modeled and simulated via using fixed-interface mode synthesis method(FIMSM). All the conclusions drawn from this article do have a meaningful help for studying the disturbance torque produced by SADA driving solar array on orbit.
基金the National Natural Science Foundation of China (No. 50975055) for financial support
文摘In this paper, taking two degrees of freedom on the armature–flapper assembly into account, a seventh-order model is deduced and proposed for the dynamic response of a two-stage electro-hydraulic servo valve from nonlinear equations. These deductions are based on fundamental laws of electromagnetism, fluid, and general mechanics. The coefficients of the proposed seventhorder model are derived in terms of servo valve physical parameters and fluid properties explicitly.For validating the results of the proposed model, an AMESim simulation model based on physical laws and the existing low-order models validated by other researchers through experiments are used to compare with the seventh-order model. The results show that the seventh-order model can reflect the physical behavior of the servo valve more explicitly than the existing low-order models and it could provide guidance more easily for a linear control design approach and sensitivity analysis than the AMESim simulation model.