In this paper, the linear complementary method for moving boundary problems with phase transformation is presented, in which a pair of unknown vectors of heat source with phase transforming and the temperature field c...In this paper, the linear complementary method for moving boundary problems with phase transformation is presented, in which a pair of unknown vectors of heat source with phase transforming and the temperature field can be solved exactly, and a large amount of iterative calculations can be avoided.展开更多
To represent well the characteristics of temporal and spatial distributions, chart of 3-dekad moving total precipitation is proposed in this paper first. Then this kind of chart is expanded in terms of Chebyshev polyn...To represent well the characteristics of temporal and spatial distributions, chart of 3-dekad moving total precipitation is proposed in this paper first. Then this kind of chart is expanded in terms of Chebyshev polynomial at irregular grids, and the quantitative representation of precipitation is got. Finally the Chebyshev coefficients are forecasted by using the forecasting method of vector similarity in phase space proposed by Zhou (1992). Using above mentioned procedures temporal and spatial distributions of precipitation over the Huanghe-- Huaihe-- H aihe Plain in China are forecasted.展开更多
In this paper, a novel signal processing technique hasbeen developed to refocus moving targets image from their smeared responses in the Synthetic Aperture Radar (SAR) image according to the characteristics of the rec...In this paper, a novel signal processing technique hasbeen developed to refocus moving targets image from their smeared responses in the Synthetic Aperture Radar (SAR) image according to the characteristics of the received signals for moving targets. Quadratic Phase Function is introduced to the parameters estimation for moving target echo and SAR imaging. Our method is available even under a low SNR environment and acquiring an exact SAR image of moving targets. The simulated results demonstrated the validity of the algorithm proposed.展开更多
Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green func...Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green function method are introduced to deal with the cryopreservation process of in vitro biomaterials. Exact solutions for the 3-D temperature transients of tissues under various boundary conditions, such as totally convective cooling, totally fixed temperature cooling and a hybrid between them on tissue surfaces, are obtained. Furthermore, the cryosurgical process in living tissues subject to freezing by a single or multiple cryoprobes is also analytically solved. A closed-form analytical solution to the bioheat phase change process is derived by considering contributions from blood perfusion heat transfer, metabolic heat generation, and heat sink of a cryoprobe. The present method is expected to have significant value for analytically solving complex bioheat transfer problems with phase change.展开更多
文摘In this paper, the linear complementary method for moving boundary problems with phase transformation is presented, in which a pair of unknown vectors of heat source with phase transforming and the temperature field can be solved exactly, and a large amount of iterative calculations can be avoided.
文摘To represent well the characteristics of temporal and spatial distributions, chart of 3-dekad moving total precipitation is proposed in this paper first. Then this kind of chart is expanded in terms of Chebyshev polynomial at irregular grids, and the quantitative representation of precipitation is got. Finally the Chebyshev coefficients are forecasted by using the forecasting method of vector similarity in phase space proposed by Zhou (1992). Using above mentioned procedures temporal and spatial distributions of precipitation over the Huanghe-- Huaihe-- H aihe Plain in China are forecasted.
文摘In this paper, a novel signal processing technique hasbeen developed to refocus moving targets image from their smeared responses in the Synthetic Aperture Radar (SAR) image according to the characteristics of the received signals for moving targets. Quadratic Phase Function is introduced to the parameters estimation for moving target echo and SAR imaging. Our method is available even under a low SNR environment and acquiring an exact SAR image of moving targets. The simulated results demonstrated the validity of the algorithm proposed.
基金Project supported by the National Natural Science Foundation of China (No. 50776097)
文摘Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green function method are introduced to deal with the cryopreservation process of in vitro biomaterials. Exact solutions for the 3-D temperature transients of tissues under various boundary conditions, such as totally convective cooling, totally fixed temperature cooling and a hybrid between them on tissue surfaces, are obtained. Furthermore, the cryosurgical process in living tissues subject to freezing by a single or multiple cryoprobes is also analytically solved. A closed-form analytical solution to the bioheat phase change process is derived by considering contributions from blood perfusion heat transfer, metabolic heat generation, and heat sink of a cryoprobe. The present method is expected to have significant value for analytically solving complex bioheat transfer problems with phase change.