以广东省某污水处理厂为例,建立“厌氧-缺氧-好氧(Anaerobic-Anoxic-Oxic,A^(2)O)-移动床生物膜反应器(Moving Bed Biofilm Reactor,MBBR)+高效沉淀池+纤维转盘滤池”工艺系统,成功解决了城市污水处理厂中氧化沟池容不足和池型设计缺陷...以广东省某污水处理厂为例,建立“厌氧-缺氧-好氧(Anaerobic-Anoxic-Oxic,A^(2)O)-移动床生物膜反应器(Moving Bed Biofilm Reactor,MBBR)+高效沉淀池+纤维转盘滤池”工艺系统,成功解决了城市污水处理厂中氧化沟池容不足和池型设计缺陷等问题,同时实现了污水处理出水的提标,使出水水质稳定达标。改造后,每吨水每天的运营成本约为0.52元。展开更多
In recirculating aquaculture systems,nitrification is usually accelerated by inoculating nitrifier or mature biocarriers.In this study,the performance of the establishment of nitrification in the MBBR according to thr...In recirculating aquaculture systems,nitrification is usually accelerated by inoculating nitrifier or mature biocarriers.In this study,the performance of the establishment of nitrification in the MBBR according to three different strategies:conventional method(Control group A),inoculation with biofloc recovered from a tilapia biofloc culture system(Group B),and addition with extra nitrite(Group C)in the Moving bed biofilm reactor(MBBR)was compared.Among them,the biofloc-inoculated group considerably accelerated the nitrification process in the MBBR(38 d),which is roughly 18 d faster than the control group(A)(56 d)and 21 d faster than group C(59 d).Less ammonia(8 mg/L NH_(4)^(+)-N,10 mg/L in other groups)and external nitrite(2 mg/L NO_(2)^(-)N)in the influent caused effluent ammonia to drop more slowly(5 d slower than the control group,8 d slower than the B group),which is detrimental to the nitrification process’development.Notably,the influent’s hydraulic retention time(HRT)was reduced from 12 h to 6 h following the successful establishment of nitrification.During the adaptation to reduced HRT,the MBBR inoculated with biofloc experienced short-term changes in the water quality index of the effluent water,whereas the other groups did not.The biofilm seeded with biofloc had the highest mean gray value ratio(1.42)of live/dead cell fluorescence,which grew better and could cover the entire groove under multiple microscope observations.However,the other groups did not demonstrate a similar trend.In summary,the research found that seeding biofloc use as nitrification bioaugmentation into the MBBR of the recirculating aquaculture system(RAS)to greatly speed up the nitrification process.展开更多
针对A^2/O+移动床生物膜反应器(A^2/O+MBBR)双污泥系统,以低碳氮比(C/N)生活污水为处理对象,考察启动过程的污泥特性和反硝化除磷特性,基于脱氮除磷的代谢机理建立系统的快速启动策略。研究结果表明:启动过程历时21 d完成,污泥结构稳定...针对A^2/O+移动床生物膜反应器(A^2/O+MBBR)双污泥系统,以低碳氮比(C/N)生活污水为处理对象,考察启动过程的污泥特性和反硝化除磷特性,基于脱氮除磷的代谢机理建立系统的快速启动策略。研究结果表明:启动过程历时21 d完成,污泥结构稳定且具有较好的污泥沉降性和生物活性;平均重量污泥浓度从1 189 mg/L增加到1 760 mg/L,SVI值在95 m L/g MLSS以下,反硝化聚磷菌(DNPAOs)占聚磷菌(PAOs)的百分比从接种污泥时的10.87%增加到25.46%。启动过程,COD的去除效果基本稳定,A^2/O反应器可实现碳源的高效利用;硝化过程为反硝化除磷提供电子受体,TN的高效去除需要建立在NH+4-N氧化完全的基础上;PO_4^(3-)-P的去除特性与NO_3^--N的变化密切相关,除了缺氧区的同步脱氮除磷,好氧吸磷对稳定PO_4^(3-)-P出水浓度发挥着重要作用。在平均进水碳氮比为3.44的运行条件下,A^2/O+MBBR系统可实现有机物、氮、磷等污染物的同步高效去除,稳定运行阶段出水COD、NH_4^+-N、TN和PO_4^(3-)-P浓度分别为38.5、1.15、14.2、0.15 mg/L,COD、TN和PO_4^(3-)-P去除率分别为82.23%,74.72%和96.80%。DO、pH和ORP等实时控制参数的变化规律与脱氮除磷存在定量关系,稳定运行阶段厌氧区ORP为-398^-336 m V,反硝化过程pH值增幅0.55,ORP增加到-300^-175 m V,硝化过程pH值降低0.37。ORP、pH值可以直观地反映反硝化过程,pH值能够灵敏地反映硝化进程,实时控制参数的联合调控有利于促进系统的快速启动和稳定运行。展开更多
文摘以广东省某污水处理厂为例,建立“厌氧-缺氧-好氧(Anaerobic-Anoxic-Oxic,A^(2)O)-移动床生物膜反应器(Moving Bed Biofilm Reactor,MBBR)+高效沉淀池+纤维转盘滤池”工艺系统,成功解决了城市污水处理厂中氧化沟池容不足和池型设计缺陷等问题,同时实现了污水处理出水的提标,使出水水质稳定达标。改造后,每吨水每天的运营成本约为0.52元。
基金the Shanghai Municipal Science and Technology Commission Project(19DZ2284300).
文摘In recirculating aquaculture systems,nitrification is usually accelerated by inoculating nitrifier or mature biocarriers.In this study,the performance of the establishment of nitrification in the MBBR according to three different strategies:conventional method(Control group A),inoculation with biofloc recovered from a tilapia biofloc culture system(Group B),and addition with extra nitrite(Group C)in the Moving bed biofilm reactor(MBBR)was compared.Among them,the biofloc-inoculated group considerably accelerated the nitrification process in the MBBR(38 d),which is roughly 18 d faster than the control group(A)(56 d)and 21 d faster than group C(59 d).Less ammonia(8 mg/L NH_(4)^(+)-N,10 mg/L in other groups)and external nitrite(2 mg/L NO_(2)^(-)N)in the influent caused effluent ammonia to drop more slowly(5 d slower than the control group,8 d slower than the B group),which is detrimental to the nitrification process’development.Notably,the influent’s hydraulic retention time(HRT)was reduced from 12 h to 6 h following the successful establishment of nitrification.During the adaptation to reduced HRT,the MBBR inoculated with biofloc experienced short-term changes in the water quality index of the effluent water,whereas the other groups did not.The biofilm seeded with biofloc had the highest mean gray value ratio(1.42)of live/dead cell fluorescence,which grew better and could cover the entire groove under multiple microscope observations.However,the other groups did not demonstrate a similar trend.In summary,the research found that seeding biofloc use as nitrification bioaugmentation into the MBBR of the recirculating aquaculture system(RAS)to greatly speed up the nitrification process.
文摘针对A^2/O+移动床生物膜反应器(A^2/O+MBBR)双污泥系统,以低碳氮比(C/N)生活污水为处理对象,考察启动过程的污泥特性和反硝化除磷特性,基于脱氮除磷的代谢机理建立系统的快速启动策略。研究结果表明:启动过程历时21 d完成,污泥结构稳定且具有较好的污泥沉降性和生物活性;平均重量污泥浓度从1 189 mg/L增加到1 760 mg/L,SVI值在95 m L/g MLSS以下,反硝化聚磷菌(DNPAOs)占聚磷菌(PAOs)的百分比从接种污泥时的10.87%增加到25.46%。启动过程,COD的去除效果基本稳定,A^2/O反应器可实现碳源的高效利用;硝化过程为反硝化除磷提供电子受体,TN的高效去除需要建立在NH+4-N氧化完全的基础上;PO_4^(3-)-P的去除特性与NO_3^--N的变化密切相关,除了缺氧区的同步脱氮除磷,好氧吸磷对稳定PO_4^(3-)-P出水浓度发挥着重要作用。在平均进水碳氮比为3.44的运行条件下,A^2/O+MBBR系统可实现有机物、氮、磷等污染物的同步高效去除,稳定运行阶段出水COD、NH_4^+-N、TN和PO_4^(3-)-P浓度分别为38.5、1.15、14.2、0.15 mg/L,COD、TN和PO_4^(3-)-P去除率分别为82.23%,74.72%和96.80%。DO、pH和ORP等实时控制参数的变化规律与脱氮除磷存在定量关系,稳定运行阶段厌氧区ORP为-398^-336 m V,反硝化过程pH值增幅0.55,ORP增加到-300^-175 m V,硝化过程pH值降低0.37。ORP、pH值可以直观地反映反硝化过程,pH值能够灵敏地反映硝化进程,实时控制参数的联合调控有利于促进系统的快速启动和稳定运行。