In this paper an introduction of the moving least squares approach is presented in the context of data approximation and interpolation problems in Geodesy.An application of this method is presented for geoid height ap...In this paper an introduction of the moving least squares approach is presented in the context of data approximation and interpolation problems in Geodesy.An application of this method is presented for geoid height approximation and interpolation using different polynomial basis functions for the approximant and interpolant,respectively,in a regular grid of geoid height data in the region 16.0417°≤φ≤47.9583°and 36.0417°≤λ≤69.9582°,with increment 0.0833°in both latitudal and longitudal directions.The results of approximation and interpolation are then compared with the geoid height data from GPS-Levelling approach.Using the standard deviation of the difference of the results,it is shown that the planar interpolant,with reciprocal of distance as weight function,is the best choice in this local approximation and interpolation problem.展开更多
针对传统三维扩展目标跟踪算法形状估计精度低的问题,提出了一种基于移动最小二乘的泊松多伯努利混合(Poisson multi-Bernoulli mixture based on the moving least square,MLS-PMBM)滤波跟踪算法。该算法基于MLS模型构建三维扩展目标...针对传统三维扩展目标跟踪算法形状估计精度低的问题,提出了一种基于移动最小二乘的泊松多伯努利混合(Poisson multi-Bernoulli mixture based on the moving least square,MLS-PMBM)滤波跟踪算法。该算法基于MLS模型构建三维扩展目标的形状矩阵,通过PMBM滤波器预测和更新目标的运动状态,利用移动最小二乘算法更新形状矩阵,结合目标质心状态与形状估计完成对三维扩展目标的跟踪。仿真实验与实际点云数据的验证表明,与现有算法相比,本文所提算法在多扩展目标的形状估计方面具有更优的性能,具有较高的泛用性。展开更多
The paper presents a parametric study on interpolation techniques based postprocessed error estimation in finite element elastic analysis by varying important parameters of recovery,interpolation scheme and type of pa...The paper presents a parametric study on interpolation techniques based postprocessed error estimation in finite element elastic analysis by varying important parameters of recovery,interpolation scheme and type of patch construction.The quality of error estimation with recovery parameters is compared in terms of local and global effectivity of error estimation,rate of error convergence,and adaptively refined meshes.A mesh free moving least square interpolation technique with proven reliability and effectivity is introduced for improving the recovery of finite element solution errors.The post-processed finite element solutions of elastic problems are presented for performance study under different parameters of recovery technique.The study concludes that recovery parameters of interpolation method have pronounced effect on the recovery of finite element solution error and analysis in adaptive environment.展开更多
非连续变形分析(discontinuous deformatrion analysis,DDA)通过引入虚拟节理网格将块体离散成子块体系统进行断裂扩展数值模拟.针对这种方法难以获得精确块体应力分布的问题,提出一种基于无网格法移动最小二乘(moving least squares,M...非连续变形分析(discontinuous deformatrion analysis,DDA)通过引入虚拟节理网格将块体离散成子块体系统进行断裂扩展数值模拟.针对这种方法难以获得精确块体应力分布的问题,提出一种基于无网格法移动最小二乘(moving least squares,MLS)插值的应力恢复算法.利用DDA计算得到的节点位移,通过恰当构造MLS形函数及其导数,推导了块体任意点应力的计算公式.数值算例将基于MLS后处理的结果与解析解及平均值法后处理结果进行比较,验证了所提出方法的精确性和有效性.展开更多
In the smoothed particle hydrodynamics (SPH) method, a meshless interpolation scheme is needed for the unknown function in order to discretize the governing equation.A particle approximation method has so far been use...In the smoothed particle hydrodynamics (SPH) method, a meshless interpolation scheme is needed for the unknown function in order to discretize the governing equation.A particle approximation method has so far been used for this purpose.Traditional particle interpolation (TPI) is simple and easy to do, but its low accuracy has become an obstacle to its wider application.This can be seen in the cases of particle disorder arrangements and derivative calculations.There are many different methods to improve accuracy, with the moving least square (MLS) method one of the most important meshless interpolation methods.Unfortunately, it requires complex matrix computing and so is quite time-consuming.The authors developed a simpler scheme, called higher-order particle interpolation (HPI).This scheme can get more accurate derivatives than the MLS method, and its function value and derivatives can be obtained simultaneously.Although this scheme was developed for the SPH method, it has been found useful for other meshless methods.展开更多
Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity proble...Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method.展开更多
In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the II...In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method.展开更多
文摘In this paper an introduction of the moving least squares approach is presented in the context of data approximation and interpolation problems in Geodesy.An application of this method is presented for geoid height approximation and interpolation using different polynomial basis functions for the approximant and interpolant,respectively,in a regular grid of geoid height data in the region 16.0417°≤φ≤47.9583°and 36.0417°≤λ≤69.9582°,with increment 0.0833°in both latitudal and longitudal directions.The results of approximation and interpolation are then compared with the geoid height data from GPS-Levelling approach.Using the standard deviation of the difference of the results,it is shown that the planar interpolant,with reciprocal of distance as weight function,is the best choice in this local approximation and interpolation problem.
文摘针对传统三维扩展目标跟踪算法形状估计精度低的问题,提出了一种基于移动最小二乘的泊松多伯努利混合(Poisson multi-Bernoulli mixture based on the moving least square,MLS-PMBM)滤波跟踪算法。该算法基于MLS模型构建三维扩展目标的形状矩阵,通过PMBM滤波器预测和更新目标的运动状态,利用移动最小二乘算法更新形状矩阵,结合目标质心状态与形状估计完成对三维扩展目标的跟踪。仿真实验与实际点云数据的验证表明,与现有算法相比,本文所提算法在多扩展目标的形状估计方面具有更优的性能,具有较高的泛用性。
文摘The paper presents a parametric study on interpolation techniques based postprocessed error estimation in finite element elastic analysis by varying important parameters of recovery,interpolation scheme and type of patch construction.The quality of error estimation with recovery parameters is compared in terms of local and global effectivity of error estimation,rate of error convergence,and adaptively refined meshes.A mesh free moving least square interpolation technique with proven reliability and effectivity is introduced for improving the recovery of finite element solution errors.The post-processed finite element solutions of elastic problems are presented for performance study under different parameters of recovery technique.The study concludes that recovery parameters of interpolation method have pronounced effect on the recovery of finite element solution error and analysis in adaptive environment.
文摘非连续变形分析(discontinuous deformatrion analysis,DDA)通过引入虚拟节理网格将块体离散成子块体系统进行断裂扩展数值模拟.针对这种方法难以获得精确块体应力分布的问题,提出一种基于无网格法移动最小二乘(moving least squares,MLS)插值的应力恢复算法.利用DDA计算得到的节点位移,通过恰当构造MLS形函数及其导数,推导了块体任意点应力的计算公式.数值算例将基于MLS后处理的结果与解析解及平均值法后处理结果进行比较,验证了所提出方法的精确性和有效性.
基金Supported by the National Natural Science Foundation of China under Grant No.10572041,50779008Doctoral Fund of Ministry of Education of China under Grant No.20060217009
文摘In the smoothed particle hydrodynamics (SPH) method, a meshless interpolation scheme is needed for the unknown function in order to discretize the governing equation.A particle approximation method has so far been used for this purpose.Traditional particle interpolation (TPI) is simple and easy to do, but its low accuracy has become an obstacle to its wider application.This can be seen in the cases of particle disorder arrangements and derivative calculations.There are many different methods to improve accuracy, with the moving least square (MLS) method one of the most important meshless interpolation methods.Unfortunately, it requires complex matrix computing and so is quite time-consuming.The authors developed a simpler scheme, called higher-order particle interpolation (HPI).This scheme can get more accurate derivatives than the MLS method, and its function value and derivatives can be obtained simultaneously.Although this scheme was developed for the SPH method, it has been found useful for other meshless methods.
基金Project supported by the National Natural Science Foundation of China(Grant No.11171208)the Shanghai Leading Academic Discipline Project,China(Grant No.S30106)
文摘Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project, China (Grant No. S30106)
文摘In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method.