Despite their high manufacturing cost and structural deficiencies especially in tip regions,highly skewed propellers are preferred in the marine industry,where underwater noise is a significant design criterion.Howeve...Despite their high manufacturing cost and structural deficiencies especially in tip regions,highly skewed propellers are preferred in the marine industry,where underwater noise is a significant design criterion.However,hydrodynamic performances should also be considered before a decision to use these propellers is made.This study investigates the trade-off between hydrodynamic and hydroacoustic performances by comparing conventional and highly skewed Seiun Maru marine propellers for a noncavitating case.Many papers in the literature focus solely on hydroacoustic calculations for the open-water case.However,propulsive characteristics are significantly different when propeller-hull interactions take place.Changes in propulsion performance also reflect on the hydroacoustic performances of the propeller.In this study,propeller-hull interactions were considered to calculate the noise spectra.Rather than solving the full case,which is computationally demanding,an indirect approach was adopted;axial velocities from the nominal ship wake were introduced as the inlet condition of the numerical approach.A hybrid method based on the acoustic analogy was used in coupling computational fluid dynamics techniques with acoustic propagation methods,implementing the Ffowcs Williams-Hawkings(FW-H)equation.The hydrodynamic performances of both propellers were presented as a preliminary study.Propeller-hull interactions were included in calculations after observing good accordance between our results,experiments,and quasi-continuous method for the open-water case.With the use of the time-dependent flow field data of the propeller behind a nonuniform ship wake as an input,simulation results were used to solve the FW-H equation to extract acoustic pressure and sound pressure levels for several hydrophones located in the near field.Noise spectra results confirm that the highest values of the sound pressure levels are in the low-frequency range and the first harmonics calculated by the present method are in good accordance with the theoretical values.Results also show that a highly skewed propeller generates less noise even in noncavitating cases despite a small reduction in hydrodynamic efficiency.展开更多
In this study,we investigate the effect of rail vibrations on the lubrication and efficiency of a splash-lubricated gearbox;specifically,the gearbox of a rail-transit vehicle.A high-fidelity 3D numerical model of the ...In this study,we investigate the effect of rail vibrations on the lubrication and efficiency of a splash-lubricated gearbox;specifically,the gearbox of a rail-transit vehicle.A high-fidelity 3D numerical model of the gearbox in a moving reference system is described,as well as computational fluid dynamics(CFD)simulations of the gearbox with different vibration directions.The effects of rotational speed,oil-immersion depth,and different oil-injection volume rates on lubrication and efficiency are discussed.We propose a method of evaluating the internal lubrication condition of a splash-lubricated gearbox and quantitatively compare the effects of different operating parameters on lubrication and efficiency.Finally,our experiment to verify the feasibility of the simulation method is described.The results show that with vibration,the churning loss and oil supply for the bearings are significantly higher than those under static conditions.In addition,among different vibrational directions,lateral vibration has the greatest influence on the lubrication condition and efficiency of the gearbox.For the studied railway-vehicle gearbox,the best lubrication condition is achieved at a rotational speed of 1600 r/min and an oil-immersion depth of two times the tooth height(2.Oh).Rotational speed is the operating parameter that has the most significant effect on the lubrication and efficiencyofthegearbox.展开更多
基金The third author acknowledges the financial support from the Scientific and Technological Research Council of Turkey(TUBITAK),Project ID:218 M372.
文摘Despite their high manufacturing cost and structural deficiencies especially in tip regions,highly skewed propellers are preferred in the marine industry,where underwater noise is a significant design criterion.However,hydrodynamic performances should also be considered before a decision to use these propellers is made.This study investigates the trade-off between hydrodynamic and hydroacoustic performances by comparing conventional and highly skewed Seiun Maru marine propellers for a noncavitating case.Many papers in the literature focus solely on hydroacoustic calculations for the open-water case.However,propulsive characteristics are significantly different when propeller-hull interactions take place.Changes in propulsion performance also reflect on the hydroacoustic performances of the propeller.In this study,propeller-hull interactions were considered to calculate the noise spectra.Rather than solving the full case,which is computationally demanding,an indirect approach was adopted;axial velocities from the nominal ship wake were introduced as the inlet condition of the numerical approach.A hybrid method based on the acoustic analogy was used in coupling computational fluid dynamics techniques with acoustic propagation methods,implementing the Ffowcs Williams-Hawkings(FW-H)equation.The hydrodynamic performances of both propellers were presented as a preliminary study.Propeller-hull interactions were included in calculations after observing good accordance between our results,experiments,and quasi-continuous method for the open-water case.With the use of the time-dependent flow field data of the propeller behind a nonuniform ship wake as an input,simulation results were used to solve the FW-H equation to extract acoustic pressure and sound pressure levels for several hydrophones located in the near field.Noise spectra results confirm that the highest values of the sound pressure levels are in the low-frequency range and the first harmonics calculated by the present method are in good accordance with the theoretical values.Results also show that a highly skewed propeller generates less noise even in noncavitating cases despite a small reduction in hydrodynamic efficiency.
基金supported by the Independent Research and Development Projects of State Key Laboratory of Heavy Duty AC Drive Electric Locomotive Systems Integration(No.R111720H01385),China.
文摘In this study,we investigate the effect of rail vibrations on the lubrication and efficiency of a splash-lubricated gearbox;specifically,the gearbox of a rail-transit vehicle.A high-fidelity 3D numerical model of the gearbox in a moving reference system is described,as well as computational fluid dynamics(CFD)simulations of the gearbox with different vibration directions.The effects of rotational speed,oil-immersion depth,and different oil-injection volume rates on lubrication and efficiency are discussed.We propose a method of evaluating the internal lubrication condition of a splash-lubricated gearbox and quantitatively compare the effects of different operating parameters on lubrication and efficiency.Finally,our experiment to verify the feasibility of the simulation method is described.The results show that with vibration,the churning loss and oil supply for the bearings are significantly higher than those under static conditions.In addition,among different vibrational directions,lateral vibration has the greatest influence on the lubrication condition and efficiency of the gearbox.For the studied railway-vehicle gearbox,the best lubrication condition is achieved at a rotational speed of 1600 r/min and an oil-immersion depth of two times the tooth height(2.Oh).Rotational speed is the operating parameter that has the most significant effect on the lubrication and efficiencyofthegearbox.